NTRU Algorithm Specification

Done By:
Sundar R

Prerequisite
We will require some basics of Abstract Algebra

Example: Ring, space
What is a Ring??

A ring 1s an algebraic structure consisting of a set equipped with two binary operations: addition

and multiplication.

In a ring, addition and multiplication are associative, addition 1s commutative, and multiplication
distributes over addition. Rings also have an additive identity (0) and an additive inverse (-a) for

every element a.

Example:

Integers are good examples of a RING

What is a Space??

a space refers to a set of elements that share common properties and are subject to
certain operations.

Ex: {2,4,6}

Secret Key vs Public Key vs Private Key

Secret Key: (Symmetric key)

Same Kkey is used in both encryption and decryption, and generally the
algorithms involving secret keys are much faster

Public Key: (Asymmetric key)

A Key that Is used only in encryption and is known to the outside world.
Private Key: (Asymmetric key)

A key that is used only in decryption and is known to only the receiver for whom
message Is meant for.

NOTE: Both Public and Private key work in pair and algorithm which involves them is
often slower and complex.

Rapid Recap of Last Presentation

P and Q are just two coprime numbers. Specifically, P should be prime and Q is much larger than P. Q
should be a power of 2.
If you want an algorithm [can give it in an exact form pls find it below:
ffp=1(mod p)
ffq=1(mod q)
Public key:h = p.fqg.g
Private key:f,fp
Message:m
Random small polynomial:r
Cipher text e=r.h+m
a=f.e(mod qg) = f(rh+m) modq = f(r.p.fg.g+m) modqg =r.p.g +f.m mod q
b=a(mod p) = (r.p.g + fm)Jmod p =fm mod p
c=b.fp(mod p) = f.m.fo(mod p) =m (mod p)

Introduction

We will be focusing about the key encapsulation mechanism(KEM) of NTRUHRSS

This Is the latest NTRU submission in NIST

What is NTRUHRSS?
NTRU Hybrid Ring Sampling Scheme

It iInvolves a fixed relationship between n,p and q we will see the values soon
After performing lots of experiments the author claims that NTRUHRSS701 version

IS the best to work with as it has shown good extent of protection against cyber

threats

It is also named after the parameter chosen, So let see them.

Definitions:

e A ternary polynomial is one where all coefficients are either -1, 0, or 1.
e T is the set of all non-zero ternary polynomials with degree less than n-1.
e T+ 1s a subset of T, containing only polynomials with the non-negative correlation property.

Parameters:
® n is prime preferred n =701

° p=3

e q=238192

o LIi=T+

o [g={Xv:vET+}
o I r=T,

e Im=T,and

o Lift(m)=7p - S3(m).

Here S3 means its restricts the message to have coefficients in the set {-1,0,1} only

For ex: If m = -2xN\2+42x+2
then S3(mM) = -xA2 +x +1

Here Lf,Lg,Lr,Lm all are spaces from which the polynomials are chosen to work
on

For example:

Assuming N=3

A polynomial f might be 1+x+x/2

A polynomial g might be (x+1)(x+1) = xA2+2x+1

r and m might be -x"2+1+x+x"2

What is the motive of the paper??

The paper implements a cryptographic algorithm called NTRUEncrypt, which 1s used for key
encapsulation. Key encapsulation 1s a method of securely transmitting Secret key over untrusted
channels.

There are basically 3 main steps
1. Key Generation
2. Key Encryption
3. Key Decryption

| will explain all of these in the coming up slides

Key Pair Generation

What does a seed mean??

In the context of cryptographic operations and random number generation, the term "seed" refers to an initial
value used to start the process of generating random numbers or cryptographic keys. It's like a starting point or
an 1nitial input that, when combined with an algorithm, produces a series of pseudo-random numbers or other
cryptographic values.

So steps to followed are:

1.Declare a seed array|just a space to store values]

2.Generate a random seed using randombytes function

3.Then from this seed generate random key pair (public key and secret key)

4.Randomize it little more by appending the secret key with additional random bytes.

What is it about randombytes function??

The randombytes function it 1s present in <cstdlib.h>. It can be thought of like a machine that shakes
numbers around to make them unpredictable. It uses special techniques (like AES256_ECB) to create random

numbers that are essential for keeping secrets safe in computer programs, like when you're sending secure
messages or protecting passwords

Now what is AES256 ECB??

The AES256 ECB(DRBG ctx.Key, DRBG ctx.V, block) takes a secret key and a value, encrypts
the value using the key, and stores the result in a block. This encrypted block 1s used to generate secure
random numbers 1n the program.

AES stands for Advanced Encryption Standard, which 1s a method for encrypting (or scrambling) data to
keep 1t secure.

256 means it uses a 256-bit key for encryption, making it very secure.

ECB stands for Electronic Codebook mode, which 1s one way to apply the AES encryption to data.

How are pk and sk populated??

f and g are generated through by sample_iid function

* |t generates a function whose coefficients is {0,1,2} and checks <x-f,f> >0
<x-f,f> > 0 what does this mean??

X.f Is cyclic shift

For ex: if N=3

Then f ={1,0,2} then x.f = {2,1,0} now <x-f,f> this means just dot product of the

both the values here 12 + 0*1 + 20 = 2>0 so this polynomial meets the
requirement.If it doesn’t hold true we have to invert the sign of even indexes

Now inverse of f(with respect to p) is computed as one private key and f itself is a
private key

Similarly g*f is calculated and stored as public key.

Now we have our public key and private key stored in the character array dedicated of them

Key Encryption

Algorithm involved is:

1 .Generate a Random Seed tor Message Encoding

2.Using this seed create two random polynomial r and m
3.Convert this polynomial into byte array say rm

4 .Hash the byte array to derive the shared secret k
5.Convert Polynomial r and Encrypt Using Public Key pk

What is a byte array??

A byte array 1s a data structure that stores a sequence of bytes, which are 8-bit units ot data.
This conversion 1s necessary to prepare the data for hashing and encryption operations

So how does rm look like?"?

rm: [r_byte_1,r_byte 2, ...,r_byte_N,m_byte 1, m_byte_2, ..., m_byte_M]
Since r and m are generated in such a way that its coefficients are in the set {-1,0,1} so rm
polynomial also has coefficients 1n the set {-1,0,1}

What is Hashing??

Hashing is a process used to transform a given input (or "message") into a fixed-size string of bytes.
 Here we use crypto_hash_sha3256 function to hash the rm byte array

What is special about crypto_hash sha3256 function??
It implements the SHA-3 hash function and outputs a 256-bit (32-byte) shared secret k

What is this SHA-3 function all about??

« SHA-3 is a family of cryotograhic hash function and keecak algorithm is the core
iIdea behind it

|t includes functions to absorb input data into the state, permute the state, and
sgueeze out the final hash output.

What is a state??

o state refers to a specific representation of data that 1s used and modified during the computation of the
algorithm.

e For example, in the Keccak (SHA-3) algorithm, the state 1s a 1600-bit (200-byte) array that 1s repeatedly
transformed through a series of permutations and bitwise operations to absorb the input data and produce the

final hash output.
Hashing involves four stages:

o State Setup: the state is represented as uint64_t s[25];

* Absorbing input:During this phase, input data is XORed into the state. keccak_absorb function
updates and modifies it content

* Permutation: KeccakF1600_StatePermute is called,it mixes the state bits in a complex way using
bitwise operations.

* Squeezing output: keccak_squeezeblocks is called, it further permutes the state and extracts the
output. The output that we get becomes the shared secret.

Author claims that these are just helpers functions that can be called when ever you want as
they are available in open source.

So wants us to focus on core logic than these side functions.

Lets walk through an example

h(X) = 2+3X+4XxN2

Compute ct = r.h mod(qg,x*n-1)

In this case assume r(x)=1+x-x"2 and n=5,9=7,p=3(lifting)
M(X)=1+x and h(X) = 2+3x+x"2+4x"3+5x"N\4

ctX) = (1 + X-XA2) " (2 + X + XA2 + 4XA3 + 5XN) = 2 + 3X + XN2 + 4XA3 + 5XN4 + 2X +
SXNA2 + XA3 + 4XA4 + SXAS - 2XA2 - BXA3 - XA4 - 4XAS - 5XN6 Reducing modulo (XAS - 1)
and then modulo 7: = 2 + 5X + 2XA2 + 2XA3 + 5XA4 (mod 7, XA5 - 1)

Lift the message m: liftm=p*m=3 * (1 + X) =3 + 3X

Add the lifted message to ct(x): ct + liftm = (2 + SX + 2XA2 + 2XA3 + 5XM) + (3 +3X) =5+ X +
2XA2 + 2XA3 + 5XA4 (mod 7)

So finally ct(x) =5 + X + 2XA2 + 2XA3 + 5XM

Key Decryption

These are the steps involved in decryption
. Decrypt the ciphertext ¢ using the secret key sk

Hash rm to derive the shared secret k

Concatenate secret PRF key and ciphertext for further hashing
Hash the concatenated buffer to derive k

Conditional move to set k to O 1f decryption failed

Dn = W o —

Lets continue with our example

We know that

Encryption result (ciphertext): c(X) = 5 + X + 2XA2 + 2XA3 + 5X/N
Secret key components:

f(X) =1 - X + XA2 (private key polynomial)
f p(X) =1+ X - XA2 (inverse of f modulo p and XAN - 1)
h_q(X)=2+4X + 6X"2 + XA3 + 5XA (inverse of f modulo g and XAN - 1)

Decryption process:

l.Compute ¢ *f (mod q, XAN -1): (O + X +2XA2 +2XA3 +5XM)* (1 -X+XA2)=35+4X +0XA2
+ 0XA3 + 5XAM (mod 7, XAS - 1)

2 Reduce the result modulo p (=3): 5 +4X + 0XA2 + 0XA3 + 5XAM (mod 3) =2 + X + 0XA2 + 0XA3
+ 2XAM (mod 3)

3.Multiply by f p(mod p, XAN-1): 2+ X +0XAM2 +0XA3 +2XM)* (1 +X-XN2)=1+X+0XA2
+ 0XA3 + 0XAM (mod 3, XAS - 1)

The result 1 + X 1s our original message m(X).

4.To recover r(X), compute: b(X) = ¢(X) - Lift(m(X)) (mod g, XAN - 1) = (5 + X + 2XA2 + 2XA3 +
SXM)-(3+3X)=2+5X +2XA2 +2XA3 + 5XAM (mod 7, XA5 - 1)

5. Then compute r(X) = b(X) * h_q(X) (mod g, XAN - 1): (2 + 35X +2XA2 + 2XA3 +5XM) * (2 +4X
+ 6XA2 + XA3 +5XM) =1+ X+ 6XA2 +0XA3 +0XA (mod 7, XAS - 1)

6 .Reduce r(X) modulo p: 1 + X + 6XA2 + 0XA3 + 0XM (mod 3) =1 + X - XA2 + 0XA3 + 0XAM4 (mod
3)

We recover 1(X) = 1 + X - XA2, which 1s our original r polynomial.

Now since r and m 1s recovered we can make rm out of it.

Now we have rm with us. What next??

The decrypted message rm 1s hashed using a hash function (SHA-3-256)
It decryption was sucessful then we maintain a variable "fail" which is set to zero and 1f there
was any 1ssues 1n decryption process we set fail” as some non zero value.
The result of this hashing 1s stored in k which becomes the shared secret
We are done with this but author prescribes following steps for more security
Now we prepare a butter space will hold a concatenation of:
A. Part of the secret key (Depends on implementation but here its (N/5 + 1));
B. The ciphertext c
Now again we use the same hash tunction on this buffer and update the new value to rm
Now this step has to be done to secure the shared secret(k)
It fail’ !=0 we immediately replace the k with rm so that shared secret 1s not visible to the
outside world.

Some Major questions to be addressed

Why double hashing??

» After doing continuous experiments, author proclaims that single layer of hashing
exposed a good chance for message and secret key to be cracked open using

different techniques like deliberate tampering of the Message Authentication
Codes etc.

e So 2nd layer of hashing was required to make it foolproof

Why after message is decrypted the process doesn't stop??

 Main motive of paper wasn’t to decrypt the encrypted message,of course it does

happen eventually but the main aim was to have a Separate Secure
Communication channel

* This Separate channel makes the recipients use even symmetric key and thus
make the communication much faster and smoother.

Interested in seeing output??

seed = 061550234D158C5EC95595FEQ4EF7A25767F2E24CC2BC479D09D86DCIABCFDE7056A8C266F9EF97EDO8541DBD2E1FFAL
pk = 54050CF5C4E5AAB6CD62C2EBDO92AEFO3A2FES521BDF836E5197F23F22F1925BC3BD6C35413983E77DB48A8OCB52AC9403F72AE8B8B10B66CBEEF480B04409B5B6C67DBEACSDB57F5FAE2F20914B7CB4FB6BD471B20D781863F39A71B115
S5E6332D3B3415A7869DAD31CEAD13036FCO3D84007B39F52507DD659D4F2A9B45C55A4B27591CACFBE7COES2943AE7864C10F76681C6D31555E6F95980EFSB3E4O8EQ22ED4Q6C4860ELB6710C286C5867776F5EFABB4E4AF3041E841C2A3261
1E219868C7715D08D91AE6E30D1AOCBABF74712FEOSFFEA26DE995DF9C03061B4592D2EFFF3846FA64B35CADA90667C879E7BD961AEAB1103D2AE3E9D4310353435C95EB943F2A42D4A40D08C6A6DBBES714196247CF48C2619E9791E7BDOAC3
3900DB4BEE1A7E3614DAOA510933BB8C5FBCC8C395F505160B67B4BO9C2D36F4430297E26B50B2E4OO5FC2A43B4A3924539067931B16DEBE7251DOEC27B8825F5C19E296C53AFB4F276DB6B451AQE67A608DCBBO661B818B7DCEGEE24E7EEG4L
B29CE81D5F5D8A90EBAGAC2A2A14FO5A79D249D5F833FC50DB577244E7F9DB1C38515A4FA8A6176666AFFASEED3301252CF2BB4486AABEQLG6EDC863120622960ES57276E221FAB7AS5247E91276C1063B82FCO7E4DA91ES52551438D1CD1FC2BAY
BB7D8E73FE1FD592D40334FA1C3F6EQ6DBDD56848C50B5BD7A8185FBBFE9814CEQ6AS9EEB379657597C701DOBFS5FOECS52928B489BB3D57204EF4D4F4769F5ED39F5B9397F5A4A179D1AF0B11463B91CC177A6743C7027B1EF957C36E90D8ALD
FFBF55AA2C60A02EFESB5669EEC7DC98345D8DA3851C77E8B8AD37BF8F54E260E89FADB4385317EBE42DE72D4FEBB64FE4OCAFS5E2B9B4E82930FA05044129E416AC0224ADDO3B4408C50501AB7F7779A461ABF17239CE949445A3C754E7DBY6E
2A1AE72F7D884F9B5131D55E1F4B1CEDCO5A157795E9F69D7B86793C5B1EQ85DDD7DA065BF9BB22BDCAD305267AC28F510F3EBDDEA656994058D8E7E3902C467DFA112370C37CEE77E7A130EDDC454212B38DFB4A7017240F78B23C9A90A2C9
83661FBO3AF46F6D6258841E5568B4F521ACEQ28019296A738A1FEF595D5B16728EC96571A14AF4FBES93B837CO5E9BACAO31EFD3353D0A62574F7CB7DF79418E866D72B3D3015C0173B7EAAC996F35320716897518C9F5AC7339534192009A
BF73CC11351216D7310E118CE4B8D2FFO3B49157A52FEDS5572DA34D1E1B6C52D942C083710A46880D8D96AD1ELICEA6B26543C09E194BFD4D24D89F36B343BEE7OED8021C5D47A1F9A447062FD6966A461C3DCOOBCBC738015A90BOFFAABSD4AA
D6ASE3EDDDOA2718606E11ED8OBEBE28C9FD1BAB46F3A7661CC508C5754EAEAB3941681615CDECE4SFE9EB1A3EQ3B2C9490C187201F267B8BC629618CBF9OE91A95FA15D94484356A58F8D596DAC853B1DDE7211F18C4986CA9DCF4CED62362
C22C792CAF9ECFABES5B786DAA81ESE9ESDCDS51F9D2ABA3EBFB8EODF1A78BFDFF7338538B39DF6FBABEOB6271E2351B92672A9476F09EDDC879261BCOF434DFA3BDE9046DF531FC3CBF15484FE3807E4BOS9EAF326578C3BBDEY05

sk = DR67D98FOO55E2C3DEEF1076BBB755AFD065112C85C46E6C350655D9625073E94E4528C053E720206CDB780A61AD5120C498A4CD3E6OC334D8702F0F79D81418AF959CAB7722EBDD30ODFOA479E1403D337AD923ESDBCED4EEO4839020F
7751C075A4892AABBBOEGO1ABA95515E1B65C63C503D97ES51EAFBYACI30F5A1DBCB7E9388B5EF1E75E893E1BSE4995E90F71691C40BO0352A96CB9BE2E1D94423F897DEDSFD466EB84CB72290014981DE962EBF41B42BE1ES8B8B7BE2EDFDB4YA
558A681458196D3B3950AA73F4DE4E8BO89BD4EL161146FD11651C955DB4661DFEOC18185EE2D7A25E24DBACA2EAD84541DAAAC3795BB1FD2536CCEBCS572EA471845B669C336FOFE7055DBF16197F5195369446789FOCAF8AOE388FE6846ES5F35
BOE309F96A932F05502FDFFECB3071CF7FAD853A05B24A715CEFCAD72E4C56EAQ3ED498C90873D99C3A80DA48DA2AA7024F7EL4AF7DC9A6546DCD596DBC8F5A65D564EQ8A119743768EF84A799DCEB49DF243212B823ES5FOC8539CA9F6004F05
6123330450E25D0A1C3CD3C8A4BF331F4ESAFA770B2F795412B472D04FFAC26F1E826E72CE336A295857A7E65EBB1077C74F36102FCEEF34552954AA831A3CA6EALEDEE2264DB71047FBCD42200D2E973E01A92CDD71DFCD290D4ES5079A952
051D6E790AAQAB5661D504113FD294C967B848D72F58DBBEE67C279347BFO3DBSDEC7BOCD1D444A852EA831B1855E9458557E6250A9BD4CESF297EA469732A0CDCO1842A38A8F89CBB9BAD2319A6EFA95FE472A7D87FADBD9538837B6DOOCF1
23AABO7585E2AOABEEC91AC7AEO87592AC737695A7CC66A1CA199622D2CCF3C46D3B53D1B4D840A5B2231B4E7680FAEF7DB8776EQ2ES5B496C22091DO3ECO7A44D9E910F591CA498BFCFO2F792DO3EEBS55643A917689101161940D6B59F9943B
720366E3BO5549CE7D8972DF1A4F3C63251DB61084FE9365FFEDCEB7CEDE9E277EBAA43ABES67F92C97A53452562F05F32A7EE347EA16Q0Q0EQABY97E686DOEBAFOC258EF8C7632D6CCAAAS323DAC2ED8FDD54578904931A614CD4E8BD3386C93A4
160C57C2F72B42EB2D35AA287F1824DA821F90C2042255FFFD38DB39983557996F8677396137963FD0306B5A8702714477BB3501F7558E66DF10907CA9410C5370C2A99075A7CBO66D1AF78EE91D91DDA377B36AE2DFA265AF620436FA11332
BBD61DACO324FB90BAS8D74CE6299E29CO4EBF2FE4441554537047E35B3CA436118EF28638A32A30EC1ACEB256FC1BB84CEE8127C82A725D1E803B61956E50C4D6AEODCS3FCB5CDO685D66EL1S507BFFS52FFDCBEE6DO1BD2492CB44200195B269
48608F1EEA7271CAF8970D497444EAS546377270171A534AFEEOSDO1EOSDA2DEE25049C14492B92E72B8F89EBB1E435630B7440226EB3E8566284065123DCO25A53B8E9899E41B636554828FF8A79B41043314C5457981A8886CE2F5B55DE205
82F36CCFD5A85E439228D69B1A927516BB0O54F3795BA2530941E4973F2D09DD3C73274F3ADO46ALIDCELAF78EASAAL8B768368AA097E7D6DA65475754F975038803F9832ES5A9AOFC7A7F74FA30E410A89933BC124C95B31657371E3BD6ES378B
6E8866A47D3F141EDS7EEF1FF5AAA64DDB7D99AE3663A5448E9ASE3F1ECO6BCD3245892D6C56CCOE76BOE7B360306EE9C127AABD143ADAA3860C42EF1AF592C968642C39C1DB8D3DOAO3QEB82EFC5C30374F5CA68F19B325F88201ED3338FD8
EQAOF61D4913COB3CB685D75F96D55E24B9769BO6EBOSD17EFBBB84E3F550A92FB398127214D167E76639844D02E6CF8384007CD1B21B540DOFC37FC80D8488B3C4F28F7F77498D9E60690B733EE47EODS428AF4FCEFD4739333DA1E94E3B7B9
4LF6F1ESEF8D90OA7BEOF91C379E9DF1561A34684FOF1B2EA6B1598CEB1B60C249CC88C4A115AFCO6B1A3A7779E2F6AB70930817C7AC336728423F13F919172A1D6F82D2BO09A264610F3DEQ4FO56602BC1C377BOEB14193A1C6E6FC6DABE709CHO
B3B456F996337536DF40EESAC8571FE7C2BC7A19

ct = 4FB29CESCE753444A0B941D877305F9338ED3F4F30F5EBAOBC1F41AD9817B1528CE86CCFF4E6F6BD364C1EBA2AFF7D48335E71FAC9BFESBB85E9FF19B3E6OEAA3517E88913F41CD010492B9CO06OD89BADFAS257B1EA77F1E32AE2C2FAE
AAB587AD305FBB99961CE88D39DBA48D8BC598EF3DC8BFECE97E67301BCEOB81EFB8EES21EF23FE70A98834B63E021B4161D1A9CDOO3C300F2E9BEFOFDD8419153194363137F28810462D512161C82FEF9D5C11E88250B00BF51202E023410788B
4LOFB89BBESEA8BFO132C6EFBD75A2C27286DF14634425520C7BF6603A6B805D1B37490E2F15164B4D276C1B4DE297F397B480275B8E39908A785E5B49B296473DA62270C2D0A396DB1898D190A043D042D4FD7FF4EDB90466861B2C590091459
DO22F9826316BCESB8EDSAS57769DB3EFB51BB2FDDC3C7882D3FC3860C338E1664B7CCD93ACCASEB9342DBDF10B1D9B53D39EF8917D9CDBOF222F6BB2BCB7ED50982846F39FA486239E738E48E59081BDC46485CF64B8D3AOCD1D430D266B1E89D
ACOCOOBBDE19D8A8901BC6505FCD7A384A8C04464298D9E27420C6D973177B6COOBBF4E28DF7B6750AF0B7F6697270806DA8066479182DDBC866517AA494589A3857B63A4004672BE2D52105282C752EODS55F1C5A29A2345BES1B391A6DD96F
4BFB34EFOA6E43014C6F712E3B53F5F60A5025024810CBDEQ12C2FFB9BF4864BEC3A6B1EOB8D6DACFBDFES4C9D875CE88F3488F2CFBBAFA3833406215167A86DD4A6BCOEFC2E4CB6F286FF4670F23CA8D8AB78F55000F1438AA2CA11927B97FD
59D77C44BBDA6B7AED96FB8F66A257A3D101F4CEQ24D98E9DF157C8978624C8387658543D9D9645B57B923DE2702D4FB100740A82BB21BD8B79F14F7955684E49C4EC7E6B72A2F1736FAALFEC3BB3B31DDAFED95B1ESOA713ECO050D5A95B94
89AACF77847B87D1CBFFAEA9QF1AFOEESE2AACBSD8OE9BF142CAB92722BOED72BE31835C9FDOCF160C1400516BDC81AF7CC710146840FAEQOS6A7898FFEFFD819B64C3E2E946D2AB4380631D9978EDB610BEO918EDB7C314A6F9714E394DFDD2
DE7C788BOE6BO1AS7FB46DOCF27FBF6FD459FBFC7FEF840DOB863EDG6EF1EQALIA93EDOCD2432C55E8CDAADF6CB31B1F1872BDE39037F5DBC94CCDE7A43ABBF8902291FCAF063D6C4C17052F63A06ADBBAEDASBBECEFB914DA4CAB6OF33EFA7AC
89EADYAODFBO3AFEEA456AF7558649133E77862F2876A3E21FB57AB2293FCAFEF6BF71ES55308FAED720216BB66D5A89172E38587B1B35D07F8DBAAS470F726C361C300C7B9672AE9B9F2DD8E7A171E3807DB745DDE434AC32060CD27F446F8A
ADBB2C234975D42308CE37C637227FCF7977B0C0142772AAFCO47678508086B5FEAR59506DD6601E152DACD2CF235B72FFFO7B50874F25312551B28F6DB1E92501E1EQ459A82AD54DF1CC9067FFA316D31CCE6747643EF514AB6C0O46189D81E
042E7EBFC9F2D190090B1F447C8F8672365A0F52838A178537B0918B2A28CE1F3A207115631F5A9C53CEEC453306DCO3ABO78FB672BF9A8765364E70904F1ED2ES5432F5E9B83C5C7B5A7DF47D3B5E2B1CO15A4E6722ECFIC8AQ6

ss = 10AF7BA1D625B16172C5B8OE2EES3AE9B7F3EDBE2E226F113EDESAQEA8D1A978

Aren’t we discussing about just polynomial operation with integers how is
alphanumeric appearing in output??

Yes,

We are dealing with just integers but the alphanumeric plain text appears because
the random function generates every integers as hexadecimal number(base 16)

So we are able to see all numbers from 1-9 and A-F(all numbers from 1 to 15)

Here
A-10 D-13
B-11 E-14

C-12 F-15

Challenges I faced in this Internship

My biggest challenge was to read research paper and understand the
documentation

 The documentation by authors in some places like random seed generation or hash
function calling wasn’t explained at all.Couldn’t get any resources also to work on
them

 The README file literally told me that some functions like these exist call them
properly with respect to their arguments

 Compatibility issue, the project was built with linux machine. Mine is Mac OS, so

many libraries weren’t of same names.Even path errors like frontslash and backslash
difference in both OS.

* | couldn’t get a user friendly algorithm to make polynomial f dynamic in naive NTRU.
Of course | got them here but | don’t want use very probabilistic algorithm for such
naive Implementation.l want a proper implementation

What did I learn and how did | overcome some of them??

* |am actually very new to Bit Masking,| tried my level best to understand the
hashing and random generation. Since documentation wasn’t there it was very
time consuming process to even get some resources for it.

 Here and there | did get some vague idea on what is happening from GPT,reditt,
stack overflow and google but wasn’t sufficient enough. Since | was in time
crunch,l didn’t care much about it because the documentation in itself focuses
more on “owcpa.c” and “kem.c” than any other helper functions. So focused more

on them.

D99

e Understood “patience is very much required for debugging<” as | wrote my

own MAKE file from scratch for building the project on my system.Found out the
way In which absolute and relative path is written for a file is different for different

OS.

 Author committed some error in calling the functions so had to sit and debug by
correcting the arguments.|It was fun experience overall.

Future works

Performance optimization:
e Exploring more efficient algorithms for hashing and random seed geneartion as there 1s some grey area around it.
® Implementing and benchmarking different sampling methods for f and g polynomuals.

Parameter selection:

e Conducting a comprehensive analysis to determine optimal parameter sets.
e Exploring the trade-offs between security, performance, and key/ciphertext sizes.

Want to clone my project on your system??

Project Github link is right over here

https://qgithub.com/sundar2k22/NTRU NIST.qgit

https://github.com/sundar2k22/NTRU_NIST.git

References

1. https://ntru.org/index.shtml
2. https://nvipubs.nist.gov/nistpubs/ir/2022/NIST.1R.8413-upd1.pdf

3. https://en.wikipedia.org/wiki/NTRUENncrypt#Public key generation

4. https://en.wikipedia.org/wiki/Euclidean algorithm

5. https://asecuritysite.com/Iattice/ntru key?
N=11&p=7&g=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2
C0%2C0%2C-1%2C0%2C-1

6. https://nitaj.users.Imno.cnrs.fr/ntru3final.pdf

/. https://www.ijcaonline.org/research/volumeil24/number7/zalekian-2015-ijca-905527.pdf

8. https://www.reddit.com/r/programming/comments/17tfgl/ntru is an asymmetric publicprivate key/

9. https://qitlab.com/cyber5Sk/valens/-/blob/master/setup.py?ref type=heads

10. https://github.com/smarky7CD/PyNTRU/blob/master/PyNTRU/ntru poly ops.py

11. https://ideaexchange.uakron.edu/cqi/viewcontent.cqgi?article=1880&context=honors research projects

12. https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

https://ntru.org/index.shtml
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://en.wikipedia.org/wiki/NTRUEncrypt#Public_key_generation
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://nitaj.users.lmno.cnrs.fr/ntru3final.pdf
https://www.ijcaonline.org/research/volume124/number7/zalekian-2015-ijca-905527.pdf
https://www.reddit.com/r/programming/comments/17tfgl/ntru_is_an_asymmetric_publicprivate_key/
https://gitlab.com/cyber5k/valens/-/blob/master/setup.py?ref_type=heads
https://github.com/smarky7CD/PyNTRU/blob/master/PyNTRU/ntru_poly_ops.py
https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_projects
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

To My Mentors:
Dr. Deepak Mishra

Dr. Mahesh Sreekumar Rajasree

Thank You

Any Questions??

Every challenge(bug) teaches you how to live(code).)..

