
NTRU Algorithm Specification

Done By:
Sundar R

What is a Ring??
A ring is an algebraic structure consisting of a set equipped with two binary operations: addition
and multiplication.
In a ring, addition and multiplication are associative, addition is commutative, and multiplication
distributes over addition. Rings also have an additive identity (0) and an additive inverse (-a) for
every element a.
Example:
Integers are good examples of a RING

Prerequisite
We will require some basics of Abstract Algebra

Example: Ring, space

What is a Space??
a space refers to a set of elements that share common properties and are subject to
certain operations.

Ex: {2,4,6}

Secret Key vs Public Key vs Private Key

Secret Key:

Same key is used in both encryption and decryption, and generally the
algorithms involving secret keys are much faster

(Symmetric key)

Public Key: (Asymmetric key)
A key that is used only in encryption and is known to the outside world.

Private Key: (Asymmetric key)

A key that is used only in decryption and is known to only the receiver for whom the
message is meant for.

NOTE: Both Public and Private key work in pair and algorithm which involves them is
often slower and complex.

Rapid Recap of Last Presentation

P and Q are just two coprime numbers. Specifically, P should be prime and Q is much larger than P. Q
should be a power of 2.
If you want an algorithm I can give it in an exact form pls find it below:
f.fp=1(mod p)
f.fq=1(mod q)
Public key:h = p.fq.g
Private key:f,fp
Message:m
Random small polynomial:r
Cipher text e=r.h+m
 a= f.e(mod q) = f(r.h+m) modq = f(r.p.fq.g+m) modq = r.p.g +f.m mod q
 b= a(mod p) = (r.p.g + f.m)mod p = f.m mod p
 c= b.fp(mod p) = f.m.fp(mod p) = m (mod p)

Introduction
We will be focusing about the key encapsulation mechanism(KEM) of NTRUHRSS

This is the latest NTRU submission in NIST

What is NTRUHRSS?
NTRU Hybrid Ring Sampling Scheme

It involves a fixed relationship between n,p and q we will see the values soon
After performing lots of experiments the author claims that NTRUHRSS701 version

is the best to work with as it has shown good extent of protection against cyber

threats

It is also named after the parameter chosen, So let see them.

Definitions:

• A ternary polynomial is one where all coefficients are either -1, 0, or 1.
• T is the set of all non-zero ternary polynomials with degree less than n-1.
• T+ is a subset of T, containing only polynomials with the non-negative correlation property.

Parameters:

• n is prime preferred n = 701

• p = 3
• q = 8192

• Lf = T+
• Lg = {X· v : v ∈ T+}
• Lr = T ,
• Lm = T , and
• Lift (m) = p · S3(m).

Here S3 means its restricts the message to have coefficients in the set {-1,0,1} only

For ex: If m = -2x^2+2x+2 
then S3(m) = -x^2 +x +1

Here Lf,Lg,Lr,Lm all are spaces from which the polynomials are chosen to work
on
For example:

Assuming N=3

A polynomial f might be 1+x+x^2

A polynomial g might be (x+1)(x+1) = x^2+2x+1

r and m might be -x^2+1+x+x^2

What is the motive of the paper??

The paper implements a cryptographic algorithm called NTRUEncrypt, which is used for key
encapsulation. Key encapsulation is a method of securely transmitting Secret key over untrusted
channels.

There are basically 3 main steps

1. Key Generation

2. Key Encryption

3. Key Decryption

I will explain all of these in the coming up slides

Key Pair Generation

What does a seed mean??
In the context of cryptographic operations and random number generation, the term "seed" refers to an initial
value used to start the process of generating random numbers or cryptographic keys. It's like a starting point or
an initial input that, when combined with an algorithm, produces a series of pseudo-random numbers or other
cryptographic values.

So steps to followed are:

1.Declare a seed array[just a space to store values]

2.Generate a random seed using randombytes function

3.Then from this seed generate random key pair (public key and secret key)

4.Randomize it little more by appending the secret key with additional random bytes.

What is it about randombytes function??
The randombytes function it is present in <cstdlib.h>. It can be thought of like a machine that shakes
numbers around to make them unpredictable. It uses special techniques (like AES256_ECB) to create random
numbers that are essential for keeping secrets safe in computer programs, like when you're sending secure
messages or protecting passwords

Now what is AES256_ECB??
The AES256_ECB(DRBG_ctx.Key, DRBG_ctx.V, block) takes a secret key and a value, encrypts
the value using the key, and stores the result in a block. This encrypted block is used to generate secure
random numbers in the program.
AES stands for Advanced Encryption Standard, which is a method for encrypting (or scrambling) data to
keep it secure.
256 means it uses a 256-bit key for encryption, making it very secure.
ECB stands for Electronic Codebook mode, which is one way to apply the AES encryption to data.

How are pk and sk populated??

f and g are generated through by sample_iid function

• It generates a function whose coefficients is {0,1,2} and checks <x⋅f,f> > 0
<x⋅f,f> > 0 what does this mean??
x.f is cyclic shift

For ex: if N=3

Then f = {1,0,2} then x.f = {2,1,0} now <x⋅f,f> this means just dot product of the
both the values here 1*2 + 0*1 + 2*0 = 2>0 so this polynomial meets the
requirement.If it doesn’t hold true we have to invert the sign of even indexes
Now inverse of f(with respect to p) is computed as one private key and f itself is a
private key
Similarly g*f is calculated and stored as public key.

Now we have our public key and private key stored in the character array dedicated of them

Key Encryption

Algorithm involved is:
1.Generate a Random Seed for Message Encoding
2.Using this seed create two random polynomial r and m
3.Convert this polynomial into byte array say rm
4.Hash the byte array to derive the shared secret k
5.Convert Polynomial r and Encrypt Using Public Key pk

A byte array is a data structure that stores a sequence of bytes, which are 8-bit units of data.
This conversion is necessary to prepare the data for hashing and encryption operations

What is a byte array??

So how does rm look like??

rm: [r_byte_1, r_byte_2, ..., r_byte_N, m_byte_1, m_byte_2, ..., m_byte_M]
Since r and m are generated in such a way that its coefficients are in the set {-1,0,1} so rm
polynomial also has coefficients in the set {-1,0,1}

What is Hashing??

Hashing is a process used to transform a given input (or "message") into a fixed-size string of bytes.

• Here we use crypto_hash_sha3256 function to hash the rm byte array

What is special about crypto_hash_sha3256 function??

It implements the SHA-3 hash function and outputs a 256-bit (32-byte) shared secret k

What is this SHA-3 function all about??

• SHA-3 is a family of cryotograhic hash function and keecak algorithm is the core
idea behind it

• It includes functions to absorb input data into the state, permute the state, and
squeeze out the final hash output.

What is a state??
• state refers to a specific representation of data that is used and modified during the computation of the

algorithm.
• For example, in the Keccak (SHA-3) algorithm, the state is a 1600-bit (200-byte) array that is repeatedly

transformed through a series of permutations and bitwise operations to absorb the input data and produce the
final hash output.

Hashing involves four stages:

• State Setup: the state is represented as uint64_t s[25];

• Absorbing input:During this phase, input data is XORed into the state. `keccak_absorb` function
updates and modifies it content

• Permutation: `KeccakF1600_StatePermute` is called,it mixes the state bits in a complex way using
bitwise operations.

• Squeezing output:`keccak_squeezeblocks` is called, it further permutes the state and extracts the
output. The output that we get becomes the shared secret.

Author claims that these are just helpers functions that can be called when ever you want as
they are available in open source.

So wants us to focus on core logic than these side functions.

Lets walk through an example

h(x) = 2+3x+4x^2

Compute ct = r.h mod(q,x^n-1)

In this case assume r(x)=1+x-x^2 and n=5,q=7,p=3(lifting)

m(x)=1+x and h(x) = 2+3x+x^2+4x^3+5x^4

ct(x) = (1 + X - X^2) * (2 + 3X + X^2 + 4X^3 + 5X^4) = 2 + 3X + X^2 + 4X^3 + 5X^4 + 2X +
3X^2 + X^3 + 4X^4 + 5X^5 - 2X^2 - 3X^3 - X^4 - 4X^5 - 5X^6 Reducing modulo (X^5 - 1)
and then modulo 7: ≡ 2 + 5X + 2X^2 + 2X^3 + 5X^4 (mod 7, X^5 - 1)

Lift the message m: liftm = p * m = 3 * (1 + X) = 3 + 3X
Add the lifted message to ct(x): ct + liftm = (2 + 5X + 2X^2 + 2X^3 + 5X^4) + (3 + 3X) ≡ 5 + X +
2X^2 + 2X^3 + 5X^4 (mod 7)
So finally ct(x) = 5 + X + 2X^2 + 2X^3 + 5X^4

Key Decryption

These are the steps involved in decryption

1. Decrypt the ciphertext c using the secret key sk
2. Hash rm to derive the shared secret k
3. Concatenate secret PRF key and ciphertext for further hashing
4. Hash the concatenated buffer to derive k
5. Conditional move to set k to 0 if decryption failed

Lets continue with our example
We know that 
Encryption result (ciphertext): c(X) = 5 + X + 2X^2 + 2X^3 + 5X^4

Secret key components:
f(X) = 1 - X + X^2 (private key polynomial)
f_p(X) = 1 + X - X^2 (inverse of f modulo p and X^N - 1)
h_q(X) = 2 + 4X + 6X^2 + X^3 + 5X^4 (inverse of f modulo q and X^N - 1)

Decryption process:
1.Compute c * f (mod q, X^N - 1): (5 + X + 2X^2 + 2X^3 + 5X^4) * (1 - X + X^2) ≡ 5 + 4X + 0X^2

+ 0X^3 + 5X^4 (mod 7, X^5 - 1)
2.Reduce the result modulo p (= 3): 5 + 4X + 0X^2 + 0X^3 + 5X^4 (mod 3) ≡ 2 + X + 0X^2 + 0X^3

+ 2X^4 (mod 3)
3.Multiply by f_p (mod p, X^N - 1): (2 + X + 0X^2 + 0X^3 + 2X^4) * (1 + X - X^2) ≡ 1 + X + 0X^2

+ 0X^3 + 0X^4 (mod 3, X^5 - 1)
The result 1 + X is our original message m(X).
4.To recover r(X), compute: b(X) = c(X) - Lift(m(X)) (mod q, X^N - 1) = (5 + X + 2X^2 + 2X^3 +

5X^4) - (3 + 3X) ≡ 2 + 5X + 2X^2 + 2X^3 + 5X^4 (mod 7, X^5 - 1)
5.Then compute r(X) = b(X) * h_q(X) (mod q, X^N - 1): (2 + 5X + 2X^2 + 2X^3 + 5X^4) * (2 + 4X

+ 6X^2 + X^3 + 5X^4) ≡ 1 + X + 6X^2 + 0X^3 + 0X^4 (mod 7, X^5 - 1)
6.Reduce r(X) modulo p: 1 + X + 6X^2 + 0X^3 + 0X^4 (mod 3) ≡ 1 + X - X^2 + 0X^3 + 0X^4 (mod

3)
We recover r(X) = 1 + X - X^2, which is our original r polynomial.
Now since r and m is recovered we can make rm out of it.

Now we have rm with us. What next??
• The decrypted message rm is hashed using a hash function (SHA-3-256)
• If decryption was sucessful then we maintain a variable `fail` which is set to zero and if there

was any issues in decryption process we set `fail` as some non zero value.
• The result of this hashing is stored in k which becomes the shared secret
• We are done with this but author prescribes following steps for more security
• Now we prepare a buffer space will hold a concatenation of:

A. Part of the secret key (Depends on implementation but here its (N/5 + 1));
B. The ciphertext c

• Now again we use the same hash function on this buffer and update the new value to rm
• Now this step has to be done to secure the shared secret(k)

If `fail` != 0 we immediately replace the k with rm so that shared secret is not visible to the
outside world.

Some Major questions to be addressed

Why double hashing??

• After doing continuous experiments, author proclaims that single layer of hashing
exposed a good chance for message and secret key to be cracked open using
different techniques like deliberate tampering of the Message Authentication
Codes etc.

• So 2nd layer of hashing was required to make it foolproof
Why after message is decrypted the process doesn't stop??

• Main motive of paper wasn’t to decrypt the encrypted message,of course it does
happen eventually but the main aim was to have a Separate Secure
Communication channel

• This Separate channel makes the recipients use even symmetric key and thus
make the communication much faster and smoother.

Interested in seeing output??

Aren’t we discussing about just polynomial operation with integers how is
alphanumeric appearing in output??

Yes,

We are dealing with just integers but the alphanumeric plain text appears because
the random function generates every integers as hexadecimal number(base 16)

So we are able to see all numbers from 1-9 and A-F(all numbers from 1 to 15)

Here

A-10 D-13

B-11 E-14

C-12 F-15

Challenges I faced in this Internship

• My biggest challenge was to read research paper and understand the
documentation

• The documentation by authors in some places like random seed generation or hash
function calling wasn’t explained at all.Couldn’t get any resources also to work on
them

• The README file literally told me that some functions like these exist call them
properly with respect to their arguments

• Compatibility issue, the project was built with linux machine. Mine is Mac OS, so
many libraries weren’t of same names.Even path errors like frontslash and backslash
difference in both OS.

• I couldn’t get a user friendly algorithm to make polynomial f dynamic in naive NTRU.
Of course I got them here but I don’t want use very probabilistic algorithm for such
naive implementation.I want a proper implementation

What did I learn and how did I overcome some of them??

• Iam actually very new to Bit Masking,I tried my level best to understand the
hashing and random generation. Since documentation wasn’t there it was very
time consuming process to even get some resources for it.

• Here and there I did get some vague idea on what is happening from GPT,reditt,
stack overflow and google but wasn’t sufficient enough. Since I was in time
crunch,I didn’t care much about it because the documentation in itself focuses
more on “owcpa.c” and “kem.c” than any other helper functions. So focused more
on them.

• Understood “patience is very much required for debugging😅” as I wrote my
own MAKE file from scratch for building the project on my system.Found out the
way in which absolute and relative path is written for a file is different for different
OS.

• Author committed some error in calling the functions so had to sit and debug by
correcting the arguments.It was fun experience overall.

Future works

Performance optimization:
• Exploring more efficient algorithms for hashing and random seed geneartion as there is some grey area around it.
• Implementing and benchmarking different sampling methods for f and g polynomials.

Parameter selection:
• Conducting a comprehensive analysis to determine optimal parameter sets.
• Exploring the trade-offs between security, performance, and key/ciphertext sizes.

Want to clone my project on your system??

Project Github link is right over here 👇

https://github.com/sundar2k22/NTRU_NIST.git

https://github.com/sundar2k22/NTRU_NIST.git

References
1. https://ntru.org/index.shtml

2. https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

3. https://en.wikipedia.org/wiki/NTRUEncrypt#Public_key_generation

4. https://en.wikipedia.org/wiki/Euclidean_algorithm

5. https://asecuritysite.com/lattice/ntru_key?
N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2
C0%2C0%2C-1%2C0%2C-1

6. https://nitaj.users.lmno.cnrs.fr/ntru3final.pdf

7. https://www.ijcaonline.org/research/volume124/number7/zalekian-2015-ijca-905527.pdf

8. https://www.reddit.com/r/programming/comments/17tfgl/ntru_is_an_asymmetric_publicprivate_key/

9. https://gitlab.com/cyber5k/valens/-/blob/master/setup.py?ref_type=heads

10. https://github.com/smarky7CD/PyNTRU/blob/master/PyNTRU/ntru_poly_ops.py

11. https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_projects

12. https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

https://ntru.org/index.shtml
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://en.wikipedia.org/wiki/NTRUEncrypt#Public_key_generation
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://asecuritysite.com/lattice/ntru_key?N=11&p=7&q=97&f=-1%2C1%2C1%2C0%2C-1%2C0%2C1%2C0%2C0%2C1%2C-1&g=-1%2C0%2C1%2C1%2C0%2C1%2C0%2C0%2C-1%2C0%2C-1
https://nitaj.users.lmno.cnrs.fr/ntru3final.pdf
https://www.ijcaonline.org/research/volume124/number7/zalekian-2015-ijca-905527.pdf
https://www.reddit.com/r/programming/comments/17tfgl/ntru_is_an_asymmetric_publicprivate_key/
https://gitlab.com/cyber5k/valens/-/blob/master/setup.py?ref_type=heads
https://github.com/smarky7CD/PyNTRU/blob/master/PyNTRU/ntru_poly_ops.py
https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_projects
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

To My Mentors:

Dr. Deepak Mishra

Dr. Mahesh Sreekumar Rajasree

Thank You
Any Questions??

Every challenge(bug) teaches you how to live(code)🙏

