On the hardness of monomial prediction and zero-sum distinguishers for Ascon

Joint work with Pranjal Dutta (Google Ph.D. Fellow, CMI) and Santanu Sarkar (IIT Madras).

Mahesh Sreekumar Rajasree, PMRF Fellow

IIT Kanpur

WCC'22 (Virtual)

Table of Contents

- 1. Monomial Prediction Problem
- 2. Hardness result
- 3. Ascon and new zero sum distinguishers
- 4. Conclusion

Monomial Prediction Problem

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

☐ Why quadratic?

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

☐ Why quadratic? Almost every **symmetric key** cryptosystems are based on composition of **quadratic** functions.

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

- ☐ Why quadratic? Almost every **symmetric key** cryptosystems are based on composition of **quadratic** functions.
- ☐ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc.

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

- ☐ Why quadratic? Almost every **symmetric key** cryptosystems are based on composition of **quadratic** functions.
- □ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all f₁'s are the same.

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

- ☐ Why quadratic? Almost every **symmetric key** cryptosystems are based on composition of **quadratic** functions.
- □ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all f₁'s are the same.
- ☐ Knowing the **coefficients** may lead to an attack.

Monomail prediction problem

Given a composition of **quadratic** functions $f := f_r \circ f_{r-1} \circ \dots \circ f_0$, and a monomial m, where each $f_i : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$, decide the **coefficient** of m in $f^{(1)}$.

- ☐ Why quadratic? Almost every **symmetric key** cryptosystems are based on composition of **quadratic** functions.
- □ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all f₁'s are the same.
- ☐ Knowing the **coefficients** may lead to an attack.
- ☐ Cube attacks can detect non-randomness if there are monomials missing.

 \square [Kayal, 2010] studied this problem in a generalization setting

 \square [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered arbitrary finite field \mathbb{F} .

- \square [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered arbitrary finite field \mathbb{F} .
- \Box Showed that it is #P-Complete.

- \square [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered arbitrary finite field \mathbb{F} .
- \square Showed that it is #P-Complete.
- ☐ Studied by [Malod, 2003] in his PhD thesis.

- \square [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered arbitrary finite field \mathbb{F} .
- \square Showed that it is #P-Complete.
- ☐ Studied by [Malod, 2003] in his PhD thesis.
- ☐ Cube testers can be used to decide existence of a monomial, but too expensive.

- \square [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered arbitrary finite field \mathbb{F} .
- \square Showed that it is #P-Complete.
- ☐ Studied by [Malod, 2003] in his PhD thesis.
- ☐ Cube testers can be used to decide existence of a monomial, but too expensive.
- ☐ [Hu et al., 2020] presented **monomial trail** concept which decides when a monomial exists in such composition of functions.

Hardness result

Language L

Consider the following language.

Language L

Consider the following language.

$$\begin{split} L &:= \{ (f,m) \mid \mathsf{coef}_m(f_1) \ = \ 1 \,, \, \mathsf{where} \, (f_1, \dots, f_{n_{r+1}}) \ = \ g_r \circ g_{r-1} \circ \dots g_0 \,, \\ & \text{and} \, g_i : \mathbb{F}_2^{n_i} \longrightarrow \mathbb{F}_2^{n_{i+1}} \,, n_i \in \mathbb{N} \,\, \forall \,\, i \,\, \in \,\, [r+1], \, \mathsf{with} \,\, n_0 = n, \\ & \text{monomial} \,\, m \,\, \in \,\, \mathbb{F}_2[x_1, \dots, x_n], \, \mathsf{and} \,\, \mathsf{deg}((g_i)_j) \leq 2 \,\} \,\,. \end{split}$$

Language L

Consider the following language.

$$\begin{split} L &:= \big\{ (f,m) \mid \mathsf{coef}_m(f_1) \ = \ 1 \,, \, \mathsf{where} \, (f_1,\ldots,f_{n_{r+1}}) \ = \ g_r \circ g_{r-1} \circ \ldots g_0 \,, \\ & \text{and} \, g_i : \mathbb{F}_2^{n_i} \longrightarrow \mathbb{F}_2^{n_{i+1}} \,, n_i \in \mathbb{N} \,\, \forall \,\, i \,\, \in \,\, [r+1], \, \mathsf{with} \,\, n_0 = n, \\ & \text{monomial} \,\, m \,\, \in \,\, \mathbb{F}_2[x_1,\ldots,x_n], \, \mathsf{and} \,\, \mathsf{deg}((g_i)_j) \leq 2 \,\big\} \,\,. \end{split}$$

$$\succ f = (f_1, \ldots, f_{n_{r+1}}).$$

Language L

Consider the following language.

$$\begin{split} L &:= \big\{ (f,m) \mid \mathsf{coef}_m(f_1) \ = \ 1 \,, \, \mathsf{where} \, (f_1,\ldots,f_{n_{r+1}}) \ = \ g_r \circ g_{r-1} \circ \ldots g_0 \,, \\ & \text{and} \, g_i : \mathbb{F}_2^{n_i} \longrightarrow \mathbb{F}_2^{n_{i+1}} \,, n_i \in \mathbb{N} \,\, \forall \,\, i \,\, \in \,\, [r+1], \, \mathsf{with} \,\, n_0 = n, \\ & \text{monomial} \,\, m \,\, \in \,\, \mathbb{F}_2[x_1,\ldots,x_n], \, \mathsf{and} \,\, \mathsf{deg}((g_i)_j) \leq 2 \,\big\} \,\,. \end{split}$$

- $\succ f = (f_1, \dots, f_{n_{r+1}}).$
- $> g_i$ maps n_i bits to n_{i+1} bits.

Language L

Consider the following language.

$$\begin{split} L &:= \{ (f,m) \mid \mathsf{coef}_m(f_1) = 1 \,,\, \mathsf{where} \, (f_1,\ldots,f_{n_{r+1}}) = g_r \circ g_{r-1} \circ \ldots g_0 \,, \\ &\quad \mathsf{and} \, g_i : \mathbb{F}_2^{n_i} \longrightarrow \mathbb{F}_2^{n_{i+1}} \,, n_i \in \mathbb{N} \,\, \forall \,\, i \in [r+1] \,,\, \mathsf{with} \,\, n_0 = n, \\ &\quad \mathsf{monomial} \,\, m \in \,\, \mathbb{F}_2[x_1,\ldots,x_n] \,,\, \mathsf{and} \,\, \mathsf{deg} \big((g_i)_j \big) \leq 2 \,\, \} \,\,. \end{split}$$

- $\succ f = (f_1, \dots, f_{n_{r+1}}).$
- $> g_i$ maps n_i bits to n_{i+1} bits.
- $(g_i)_i$'s are either constant, linear or quadratic.

Language L

Consider the following language.

$$\begin{split} L &:= \{ (f,m) \mid \text{coef}_m(f_1) = 1 \text{, where } (f_1, \dots, f_{n_{r+1}}) = g_r \circ g_{r-1} \circ \dots g_0 \text{,} \\ &\text{and } g_i : \mathbb{F}_2^{n_i} \longrightarrow \mathbb{F}_2^{n_{i+1}}, n_i \in \mathbb{N} \ \forall \ i \in [r+1], \text{with } n_0 = n, \\ &\text{monomial } m \in \mathbb{F}_2[x_1, \dots, x_n], \text{ and } \deg((g_i)_j) \leq 2 \, \} \, . \end{split}$$

- $\succ f = (f_1, \ldots, f_{n_{r+1}}).$
- $> g_i$ maps n_i bits to n_{i+1} bits.
- $(g_i)_j$'s are either constant, linear or quadratic.

Theorem: Hardness of monomial prediction

Given a composition of **quadratic** functions f and a monomial m, deciding whether $(f, m) \in L$ is $\oplus P$ -hard.

Recall

☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.

- ☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.
- □ Odd Hamiltonian Cycle deciding whether a given graph G = (V, E) has an odd number of Hamiltonian cycles, is ⊕P-hard.

- ☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.
- □ Odd Hamiltonian Cycle deciding whether a given graph G = (V, E) has an odd number of Hamiltonian cycles, is ⊕P-hard.
- \square Hamiltonian Cycle polynomial $HC_n(x_{1,1},\ldots,x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$

- ☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.
- □ Odd Hamiltonian Cycle deciding whether a given graph G = (V, E) has an odd number of Hamiltonian cycles, is $\oplus P$ -hard.
- □ Hamiltonian Cycle polynomial $HC_n(x_{1,1},...,x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$ where S_n is the symmetric group on a set of size n.

- ☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.
- □ Odd Hamiltonian Cycle deciding whether a given graph G = (V, E) has an odd number of Hamiltonian cycles, is $\oplus P$ -hard.
- □ Hamiltonian Cycle polynomial $HC_n(x_{1,1},...,x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$ where S_n is the symmetric group on a set of size n. If $(x_{1,1},...,x_{n,n})$ is adjacency matrix, then HC_n counts the number of Hamiltonian cycles.

Recall

- ☐ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is visited *exactly* once.
- □ Odd Hamiltonian Cycle deciding whether a given graph G = (V, E) has an odd number of Hamiltonian cycles, is ⊕P-hard.
- □ Hamiltonian Cycle polynomial $HC_n(x_{1,1},...,x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$ where S_n is the symmetric group on a set of size n. If $(x_{1,1},...,x_{n,n})$ is adjacency matrix, then HC_n counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle $\leq_p L$.

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$.

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables.

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

(i)
$$g_0: \mathbb{F}_2^{n^2+2n} \longrightarrow \mathbb{F}_2^{2n^2}$$
, and

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

(i)
$$g_0: \mathbb{F}_2^{n^2+2n} \longrightarrow \mathbb{F}_2^{2n^2}$$
, and $g_i: \mathbb{F}_2^{2n^2} \longrightarrow \mathbb{F}_2^{2n^2}$, for $i \in [n]$,

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

(i) $g_0: \mathbb{F}_2^{n^2+2n} \longrightarrow \mathbb{F}_2^{2n^2}$, and $g_i: \mathbb{F}_2^{2n^2} \longrightarrow \mathbb{F}_2^{2n^2}$, for $i \in [n]$, with $\deg((g_i)_j) \le 2$, and

Proof sketch: Core lemma

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

- (i) $g_0: \mathbb{F}_2^{n^2+2n} \longrightarrow \mathbb{F}_2^{2n^2}$, and $g_i: \mathbb{F}_2^{2n^2} \longrightarrow \mathbb{F}_2^{2n^2}$, for $i \in [n]$, with $\deg((g_i)_j) \le 2$, and
- (ii) $\operatorname{coef}_{y_1 \cdots y_n \cdot z_1 \cdots z_n} (f_1(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) = \mathsf{HC}_n(\boldsymbol{x}),$

Proof sketch: Core lemma

Lemma: Composition lemma

Let G = (V, E) be a given graph with the adjacency matrix $\mathbf{x} = (x_{i,j})_{i,j \in [n]}$. Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{z} = (z_1, \dots, z_n)$ be 2n variables. Then, there exist g_0, \dots, g_n , polynomial maps such that

- (i) $g_0: \mathbb{F}_2^{n^2+2n} \longrightarrow \mathbb{F}_2^{2n^2}$, and $g_i: \mathbb{F}_2^{2n^2} \longrightarrow \mathbb{F}_2^{2n^2}$, for $i \in [n]$, with $\deg((g_i)_j) \le 2$, and
- (ii) $\operatorname{coef}_{y_1 \cdots y_n \cdot z_1 \cdots z_n} (f_1(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) = \mathsf{HC}_n(\boldsymbol{x}), \text{where } (f_1, \dots, f_{2n^2}) = g_n \circ \dots \circ g_0.$

$$(g_0(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1-n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_0(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_1(\boldsymbol{w},\boldsymbol{s}))_k := \begin{cases} w_{i,j} \cdot s_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ (g_1(\boldsymbol{w},\boldsymbol{s}))_{k-n^2}, & \text{when } n^2 < k \leq 2n^2. \end{cases}$$

$$(g_0(\pmb{x}, \pmb{y}, \pmb{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_1(\boldsymbol{w},\boldsymbol{s}))_k := \begin{cases} w_{i,j} \cdot s_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ (g_1(\boldsymbol{w},\boldsymbol{s}))_{k-n^2}, & \text{when } n^2 < k \leq 2n^2. \end{cases}$$

$$(g_{\ell}(\boldsymbol{w}, \boldsymbol{s}))_k := \begin{cases} \sum_{r=1}^n w_{i,r} \cdot s_{r,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ s_{i,j}, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_0(\pmb{x}, \pmb{y}, \pmb{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_1(\boldsymbol{w},\boldsymbol{s}))_k := \begin{cases} w_{i,j} \cdot s_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ (g_1(\boldsymbol{w},\boldsymbol{s}))_{k-n^2}, & \text{when } n^2 < k \leq 2n^2. \end{cases}$$

$$(g_{\ell}(\boldsymbol{w}, \boldsymbol{s}))_k := \begin{cases} \sum_{r=1}^n w_{i,r} \cdot s_{r,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ s_{i,j}, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

Claim 1

For any $\ell \geq 1$,

$$(g_{\ell}(\ldots(g_0(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\ldots)_k=x_{i,j}\cdot y_i\cdot z_j$$

for
$$k \in [n^2 + 1, 2n^2]$$
, where $k - 1 - n^2 = (i - 1) + n(j - 1)$.

Claim 1

For any $\ell \geq 1$,

$$(g_{\ell}(\ldots(g_0(\mathbf{x},\mathbf{y},\mathbf{z})\ldots)_k = x_{i,j}\cdot y_i\cdot z_j$$

for
$$k \in [n^2 + 1, 2n^2]$$
, where $k - 1 - n^2 = (i - 1) + n(j - 1)$.

Let us prove for $\ell = 1$, i.e., $g_1(g_0(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))$.

Claim 1

For any $\ell \geq 1$,

$$(g_{\ell}(\ldots(g_0(\mathbf{x},\mathbf{y},\mathbf{z})\ldots)_k = x_{i,j}\cdot y_i\cdot z_j$$

for
$$k \in [n^2 + 1, 2n^2]$$
, where $k - 1 - n^2 = (i - 1) + n(j - 1)$.

Let us prove for $\ell = 1$, i.e., $g_1(g_0(\mathbf{x}, \mathbf{y}, \mathbf{z}))$.

$$(g_0(\pmb{x}, \pmb{y}, \pmb{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1-n^2 = (i-1) + n(j-1). \end{cases}$$

Claim 1

For any $\ell \geq 1$,

$$(g_{\ell}(\ldots(g_0(\mathbf{x},\mathbf{y},\mathbf{z})\ldots)_k = x_{i,j}\cdot y_i\cdot z_j$$

for $k \in [n^2 + 1, 2n^2]$, where $k - 1 - n^2 = (i - 1) + n(j - 1)$.

Let us prove for $\ell = 1$, i.e., $g_1(g_0(\mathbf{x}, \mathbf{y}, \mathbf{z}))$.

$$(g_0(\pmb{x}, \pmb{y}, \pmb{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1 - n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_1(\boldsymbol{w}, \boldsymbol{s}))_k := \begin{cases} w_{i,j} \cdot s_{i,j}, & \text{when } k \le n^2, \text{where } k - 1 = (i - 1) + n(j - 1), \\ (g_1(\boldsymbol{w}, \boldsymbol{s}))_{k - n^2}, & \text{when } n^2 < k \le 2n^2. \end{cases}$$

Claim 1

For any $\ell \geq 1$,

$$(g_{\ell}(\ldots(g_0(\mathbf{x},\mathbf{y},\mathbf{z})\ldots)_k = x_{i,j}\cdot y_i\cdot z_j)$$

for $k \in [n^2 + 1, 2n^2]$, where $k - 1 - n^2 = (i - 1) + n(j - 1)$.

Let us prove for $\ell = 1$, i.e., $g_1(g_0(\mathbf{x}, \mathbf{y}, \mathbf{z}))$.

$$(g_0(\pmb{x}, \pmb{y}, \pmb{z}))_k := \begin{cases} x_{i,j}, & \text{when } k \leq n^2, \text{where } k-1 = (i-1) + n(j-1), \\ y_i \cdot z_j, & \text{when } n^2 < k \leq 2n^2, \text{where } k-1-n^2 = (i-1) + n(j-1). \end{cases}$$

$$(g_1(\boldsymbol{w}, \boldsymbol{s}))_k := \begin{cases} w_{i,j} \cdot s_{i,j}, & \text{when } k \le n^2, \text{where } k - 1 = (i - 1) + n(j - 1), \\ (g_1(\boldsymbol{w}, \boldsymbol{s}))_{k - n^2}, & \text{when } n^2 < k \le 2n^2. \end{cases}$$

For $\ell > 1$, observe that g_{ℓ} is an identity map in the last n^2 coordinates.

Claim 2

For any $\ell \ge 2$ and $k \in [n^2]$,

$$(g_{\ell}(\dots(g_{0}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\dots))_{k}$$

$$= y_{i}z_{j} \cdot \sum_{1 \leq m_{1},\dots,m_{\ell-1} \leq n} x_{i,m_{1}}x_{m_{1},m_{2}} \cdots x_{m_{\ell-2},m_{\ell-1}}x_{m_{\ell-1},j} \cdot \left(\prod_{s=1}^{\ell-1} y_{m_{s}}z_{m_{s}} \right) .$$

q

Claim 2

For any $\ell \ge 2$ and $k \in [n^2]$,

$$(g_{\ell}(\dots(g_{0}(\mathbf{x},\mathbf{y},\mathbf{z})\dots))_{k}$$

$$=y_{i}z_{j}\cdot\sum_{1\leq m_{1},\dots,m_{\ell-1}\leq n}x_{i,m_{1}}x_{m_{1},m_{2}}\cdots x_{m_{\ell-2},m_{\ell-1}}x_{m_{\ell-1},j}\cdot\left(\prod_{s=1}^{\ell-1}y_{m_{s}}z_{m_{s}}\right).$$

Claim 2 with k = 1 (i.e. i = j = 1) and $\ell = n$, gives the following identity:

q

Claim 2

For any $\ell \ge 2$ and $k \in [n^2]$,

$$(g_{\ell}(\dots(g_{0}(\mathbf{x},\mathbf{y},\mathbf{z})\dots))_{k}$$

$$=y_{i}z_{j}\cdot\sum_{1\leq m_{1},\dots,m_{\ell-1}\leq n}x_{i,m_{1}}x_{m_{1},m_{2}}\cdots x_{m_{\ell-2},m_{\ell-1}}x_{m_{\ell-1},j}\cdot\left(\prod_{s=1}^{\ell-1}y_{m_{s}}z_{m_{s}}\right).$$

Claim 2 with k = 1 (i.e. i = j = 1) and $\ell = n$, gives the following identity:

$$(g_{n}(\dots(g_{0}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\dots)_{1})$$

$$= y_{1}z_{1} \cdot \sum_{1 \leq m_{1},\dots,m_{n-1} \leq n} x_{1,m_{1}}x_{m_{1},m_{2}} \cdots x_{m_{n-2},m_{n-1}}x_{m_{n-1},1} \cdot \left(\prod_{s=1}^{n-1} y_{m_{s}}z_{m_{s}} \right)$$

$$= \left(\prod_{s=1}^{n} y_{m_{s}}z_{m_{s}} \right) \cdot \sum_{1 \leq m_{1},\dots,m_{n-1} \leq n} x_{1,m_{1}}x_{m_{1},m_{2}} \cdots x_{m_{n-2},m_{n-1}}x_{m_{n-1},1} \cdot \left(\prod_{s=1}^{n-1} y_{m_{s}}z_{m_{s}} \right)$$

Claim 2

For any $\ell \ge 2$ and $k \in [n^2]$,

$$(g_{\ell}(\dots(g_{0}(\mathbf{x},\mathbf{y},\mathbf{z})\dots))_{k}$$

$$=y_{i}z_{j}\cdot\sum_{1\leq m_{1},\dots,m_{\ell-1}\leq n}x_{i,m_{1}}x_{m_{1},m_{2}}\cdots x_{m_{\ell-2},m_{\ell-1}}x_{m_{\ell-1},j}\cdot\left(\prod_{s=1}^{\ell-1}y_{m_{s}}z_{m_{s}}\right).$$

Claim 2 with k = 1 (i.e. i = j = 1) and $\ell = n$, gives the following identity:

$$(g_n(\dots(g_0(\mathbf{x},\mathbf{y},\mathbf{z})\dots)_1)$$

$$= y_1 z_1 \cdot \sum_{1 \le m_1,\dots,m_{n-1} \le n} x_{1,m_1} x_{m_1,m_2} \cdots x_{m_{n-2},m_{n-1}} x_{m_{n-1},1} \cdot \left(\prod_{s=1}^{n-1} y_{m_s} z_{m_s} \right)$$

$$= \left(\prod_{s=1}^n y_{m_s} z_{m_s} \right) \cdot \sum_{1 \le m_1,\dots,m_{n-1} \le n} x_{1,m_1} x_{m_1,m_2} \cdots x_{m_{n-2},m_{n-1}} x_{m_{n-1},1} \right) .$$

Ascon and new zero sum distinguishers

☐ Ascon ia a permutation-based family of authenticated encryption with associated data algorithms (AEAD).

- ☐ Ascon ia a permutation-based family of authenticated encryption with associated data algorithms (AEAD).
- ☐ It is one among the 10 finalists in the NIST lightweight cryptography standardization.

Ascon ia a permutation-based family of authenticated encryption with associated data algorithms (AEAD).
 It is one among the 10 finalists in the NIST lightweight cryptography standardization.
 The core permutation p of Ascon is based on substitution permutation network (SPN) design paradigm.

Ascon ia a permutation-based family of authenticated encryption with
associated data algorithms (AEAD).
It is one among the 10 finalists in the NIST lightweight cryptography standardization.
The core permutation p of Ascon is based on substitution permutation network (SPN) design paradigm.
It operates on a 320-bit state arranged into five 64-bit words and is defined as $p: p_L \circ p_S \circ p_C$.

ρ_C function

Addition of constants (p_C) . We add an 8-bit constant to the bits 56, \cdots , 63 of word X_2 at each round.

p_S function

Substitution layer (p_S) . We apply a 5-bit Sbox on each of the 64 columns. Let $(x_0, x_1, x_2, x_3, x_4)$ and $(y_0, y_1, y_2, y_3, y_4)$ denote the input and output of the Sbox, respectively.

Substitution layer (p_S) . We apply a 5-bit Sbox on each of the 64 columns. Let $(x_0, x_1, x_2, x_3, x_4)$ and $(y_0, y_1, y_2, y_3, y_4)$ denote the input and output of the Sbox, respectively.

$$\begin{cases} y_0 = x_4 x_1 + x_3 + x_2 x_1 + x_2 + x_1 x_0 + x_1 + x_0 \\ y_1 = x_4 + x_3 x_2 + x_3 x_1 + x_3 + x_2 x_1 + x_2 + x_1 + x_0 \\ y_2 = x_4 x_3 + x_4 + x_2 + x_1 + 1 \\ y_3 = x_4 x_0 + x_4 + x_3 x_0 + x_3 + x_2 + x_1 + x_0 \\ y_4 = x_4 x_1 + x_4 + x_3 + x_1 x_0 + x_1 \end{cases}$$
(1)

p_L function

Linear diffusion layer (p_L) **.** Each 64-bit word is updated by a linear operation Σ_i which is defined below.

Linear diffusion layer (p_L). Each 64-bit word is updated by a linear operation Σ_i which is defined below.

$$\begin{cases} X_{0} \leftarrow \Sigma_{0}(Y_{0}) = Y_{0} + (Y_{0} \gg 19) + (Y_{0} \gg 28) \\ X_{1} \leftarrow \Sigma_{1}(Y_{1}) = Y_{1} + (Y_{1} \gg 61) + (Y_{1} \gg 39) \\ X_{2} \leftarrow \Sigma_{2}(Y_{2}) = Y_{2} + (Y_{2} \gg 1) + (Y_{2} \gg 6) \\ X_{3} \leftarrow \Sigma_{3}(Y_{3}) = Y_{3} + (Y_{3} \gg 10) + (Y_{3} \gg 17) \\ X_{4} \leftarrow \Sigma_{4}(Y_{4}) = Y_{4} + (Y_{4} \gg 7) + (Y_{4} \gg 41) \end{cases}$$
 (2)

New zero sum distinguishers

The state at the input of *r*-th round is denoted by $X_0^r ||X_1^r|| |X_2^r|| |X_3^r|| |X_4^r|$.

New zero sum distinguishers

The state at the input of r-th round is denoted by $X_0^r ||X_1^r ||X_2^r ||X_3^r ||X_4^r$. We first gave a new zero sum distinguisher for 5 rounds with complexity 2^{15} by finding a monomial that was missing from the output polynomial.

New zero sum distinguishers

The state at the input of r-th round is denoted by $X_0^r ||X_1^r||X_2^r ||X_3^r||X_4^r$. We first gave a new zero sum distinguisher for 5 rounds with complexity 2^{15} by finding a monomial that was missing from the output polynomial.

Rounds	Cube size	Cube indices $(X_3^0 = X_4^0)$	Output indices (X_0^5)
5	13	0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16	4
		0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16	4
		0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16	4
	14	0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14	1, 4
5		0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16	4, 15, 24, 36
		0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18	4

Table 1: List of cubes for 5-round Ascon-128

Conclusion

 $\hfill \square$ Can we extend our theorem to composition of bounded degree functions?

- ☐ Can we extend our theorem to composition of bounded degree functions?
- $\hfill \square$ Is it possible to model an MILP to find whether a monomial is missing?

- ☐ Can we extend our theorem to composition of bounded degree functions?
- ☐ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?