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Õ(n + t)

8



Projection SSUM

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

UNIQUE PSSUM is such that any valid subset sum , there exists a unique , 
i.e., 

t′ S

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

UNIQUE PSSUM is such that any valid subset sum , there exists a unique , 
i.e., 

t′ S

 

∑
i∈S

ai = t′ 

9



Unique-PSSUM for p = 1

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

|∑
i∈T

ai − t | < | t − t′ |

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

|∑
i∈T

ai − t | < | t − t′ |

Claim: t′ ≤ 2t
10



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

To find , update the table with additional 
informations.

j

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

To find , update the table with additional 
informations.

j

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.
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Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where
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Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where
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λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |1 ≤ b

Since,  is very large, this implies . Also,λ (t − Bx)n+1 = 0 ⟹ ⃗a ⋅ x = b

b ≥
n

∑
i=1

|aixi | =
n

∑
i=1

ai |xi | ≥
n

∑
i=1

aixi = b
20
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Other Results

• There is an  time deterministic algorithm for Hamming-
-SUBSSUM (ask to return all  where the number of solutions is 

atmost )

Õ(k(n + t)) k

∑
i∈[n]

βi

k

22



Other Results

• There is an  time deterministic algorithm for Hamming-
-SUBSSUM (ask to return all  where the number of solutions is 

atmost )

Õ(k(n + t)) k

∑
i∈[n]

βi

k

• There is a -time and -space deterministic algorithm 
which solves -SUBSSUM (ask to return all  where the number 
of solutions is atmost )

poly(knt) O(log(knt))
k (β1, …, βn)

k
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23



Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1
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Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1

• We saw reductions from UBSSUM to CVP.

• Can we find an  time algorithm for PSSUM .Õ(n + t) 1

• Extend it to other values of ?p
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Thank You!
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