On the Variants of Subset Sum: **Projected and Unbounded** Pranjal Dutta (NUS), Mahesh Sreekumar Rajasree (IITD)

SYNASC 2023

- Introduction ●
- Randomized $\tilde{O}(n + t)$ algorithm for Unique Projection Subset Sum

- Introduction
- Randomized $\tilde{O}(n + t)$ algorithm for Unique Projection Subset Sum
- Reduction from Unbounded Subset Sum to Closest Vector Problem

- Introduction
- Randomized $\tilde{O}(n + t)$ algorithm for Unique Projection Subset Sum
- Reduction from Unbounded Subset Sum to Closest Vector Problem
- Other Results

- Introduction
- Randomized $\tilde{O}(n + t)$ algorithm for Unique Projection Subset Sum
- Reduction from Unbounded Subset Sum to Closest Vector Problem
- Other Results
- Conclusion

Subset Sum Problem (SSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$, decide whether there exist $S \subseteq [n]$ such that

Subset Sum Problem (SSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$, decide whether there exist $S \subseteq [n]$ such that

$$a_i = t$$

Subset Sum Problem (SSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$, decide whether there exist $S \subseteq [n]$ such that

NP complete problem.

$$a_i = t$$

Subset Sum Problem (SSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$, decide whether there exist $S \subseteq [n]$ such that

NP complete problem.

O(nt) time algorithm due to Bellman.

$$a_i = t$$

Subset Sum Problem (SSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$, decide whether there exist $S \subseteq [n]$ such that

NP complete problem.

O(nt) time algorithm due to Bellman. Randomized O(n + t) time algorithm due to [Jin & Wu, Bringmann].

$$a_i = t$$

decide whether there exist $\beta_1, \ldots, \beta_n \in \mathbb{Z}_{>0}$ such that

Unbounded Subset Problem (UBSSUM) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$,

decide whether there exist $\beta_1, \ldots, \beta_n \in \mathbb{Z}_{>0}$ such that

- Unbounded Subset Problem (UBSSUM) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$,
 - $\sum_{i=1}^{n} (\beta_i \cdot a_i) = t$

decide whether there exist $\beta_1, \ldots, \beta_n \in \mathbb{Z}_{>0}$ such that

i=1

NP-complete problem. O(nt) time algorithm due to Bellman.

- Unbounded Subset Problem (UBSSUM) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$,
 - $\sum_{i=1}^{n} (\beta_i \cdot a_i) = t$

decide whether there exist $\beta_1, \ldots, \beta_n \in \mathbb{Z}_{>0}$ such that

i=1

NP-complete problem. O(nt) time algorithm due to Bellman.

Randomized $\tilde{O}(n + t)$ time algorithm.

- Unbounded Subset Problem (UBSSUM) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$,
 - $\sum_{i=1}^{n} (\beta_i \cdot a_i) = t$

p, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

Projection Subset Problem (PSSUM_p) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and

p, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

Projection Subset Problem (PSSUM_p) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and

$$x_i = t$$

Projection Subset Problem (PSSUM_{*p*}) - Given $a_1, ..., a_n, t \in \mathbb{Z}_{\geq 0}$ and *p*, find $x_1, ..., x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

- $\sum_{i \in S} x_i = t$
- $||\overrightarrow{a} \overrightarrow{x}||_p$ is minimised

p, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

NP-complete problem.

- Projection Subset Problem (PSSUM_p) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and
 - $\sum x_i = t$ $i \in S$
 - $||\overrightarrow{a} \overrightarrow{x}||_{p}$ is minimised

p, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

NP-complete problem.

O(nt) time algorithm?

- Projection Subset Problem (PSSUM_p) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and
 - $\sum x_i = t$ $i \in S$
 - $||\overrightarrow{a} \overrightarrow{x}||_{p}$ is minimised

$$a_i = t$$

Consider

O(n + t) algorithm for SSUM

$$a_i = t$$

$$\sum_{i \in S} a_i = t$$

Claim:- $(a_1, ..., a_n, t) \in SSUM \iff coeff(f, x^t) \neq 0$

O(n + t) algorithm for SSUM

$$\sum_{i \in S} a_i = t$$

 $f(x) = (1 + x^{a_i})$ $i \in [n]$

Claim:- $(a_1, ..., a_n, t) \in SSUM \iff coeff(f, x^t) \neq 0$

 $f(x) = 1 + x^{a_1} + \dots + x^{a_n} + x^{a_1 + a_2} + x^{a_1 + a_3} + \dots + x^{a_1 + a_2 + \dots + a_n}$

O(n + t) algorithm for SSUM

$$\sum_{i \in S} a_i = t$$

 $f(x) = (1 + x^{a_i})$ $i \in [n]$

Randomized $\tilde{O}(n + t)$ algorithm for Unique Projection Subset Sum

Projection SSUM

Projection SSUM

Projection Subset Problem (PSSUM_{*p*}) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and *p*, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

Projection SSUM

Projection Subset Problem (PSSUM_{*p*}) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and *p*, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

$$\sum_{i=1}^{\infty} x_i = t$$
Projection SSUM

- Projection Subset Problem (PSSUM_{*p*}) Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{\geq 0}$ and *p*, find $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

 $||\overrightarrow{a} - \overrightarrow{x}||_{p}$ is minimised

$$\sum_{i=1}^{N} x_i = t$$

Projection SSUM

 $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

i.e.,

Projection Subset Problem (PSSUM_{*p*}) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$ and *p*, find

$$\sum_{i=1}^{N} x_i = t$$

 $||\overrightarrow{a} - \overrightarrow{x}||_p$ is minimised

UNIQUE PSSUM is such that any valid subset sum t', there exists a unique S,

Projection SSUM

 $x_1, \ldots, x_n \in \mathbb{Z}$ such that there exists $S \subseteq [n]$

i.e.,

Projection Subset Problem (PSSUM_{*p*}) - Given $a_1, \ldots, a_n, t \in \mathbb{Z}_{>0}$ and *p*, find

$$x_i = t$$

$$|_p$$
 is minimised

UNIQUE PSSUM is such that any valid subset sum t', there exists a unique S,

Input: $a_1, ..., a_n, t$

Input: $a_1, ..., a_n, t$

Find t' such that

Input: $a_1, ..., a_n, t$

Find t' such that

1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $i \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

Input: $a_1, ..., a_n, t$

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$. 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

$$\sum_{i \in T} y_i = t$$

Input: $a_1, ..., a_n, t$

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$. 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

 $\sum_{i \in T} y_i = t$ $||\overrightarrow{a} - \overrightarrow{y}||_1 < ||\overrightarrow{a} - \overrightarrow{x}||_1$

Input: $a_1, ..., a_n, t$

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$. 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

$\sum_{i \in T} y_i = t$ $||\overrightarrow{a} - \overrightarrow{y}||_1 < ||\overrightarrow{a} - \overrightarrow{x}||_1$

then, we can show that

Input: $a_1, ..., a_n, t$

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$. 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

$\sum_{i \in T} y_i = t$ $||\overrightarrow{a} - \overrightarrow{y}||_1 < ||\overrightarrow{a} - \overrightarrow{x}||_1$

then, we can show that

$$|\sum_{i \in T} a_i - t| < |t - t'|$$

Input: $a_1, ..., a_n, t$

- Find t' such that
- 1. there exists $S \subseteq [n]$ and $\sum_{i \in S} a_i = t'$. 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Suppose there is a better solution, i.e., y_1, \ldots, y_n such that

$\sum_{i \in T} y_i = t$ $||\overrightarrow{a} - \overrightarrow{y}||_1 < ||\overrightarrow{a} - \overrightarrow{x}||_1$

then, we can show that

$$|\sum_{i \in T} a_i - t| < |t - t'|$$

Claim: $t' \leq 2t$

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. i∈S 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

11

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Theorem: There is an O(nt) deterministic time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Theorem: There is an O(nt) deterministic time algorithm.

Run Bellman's algorithm upto 2t to find the closest t'.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Theorem: There is an O(nt) deterministic time algorithm.

Run Bellman's algorithm upto 2t to find the closest t'.

To find *j*, update the table with additional informations.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Theorem: There is an O(nt) deterministic time algorithm.

Run Bellman's algorithm upto 2t to find the closest t'.

To find *j*, update the table with additional informations.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. i∈S 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Unique-PSSUM for p = 1**Theorem:** There is an $\tilde{O}(n + t)$ randomised time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

12

Unique-PSSUM for p =**Theorem:** There is an $\tilde{O}(n + t)$ randomised time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $i \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Use the O(n + t) randomised algorithm to find t'. Recall, the algorithm checks whether $coeff(f, x^t) \neq 0$ where

Unique-PSSUM for p =**Theorem:** There is an $\tilde{O}(n + t)$ randomised time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $i \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Use the O(n + t) randomised algorithm to find t'. Recall, the algorithm checks whether $coeff(f, x^t) \neq 0$ where

$$f(x) = \prod_{i=1}^{n} (1 + x^{a_i})$$

Unique-PSSUM for p = 1**Theorem:** There is an $\tilde{O}(n + t)$ randomised time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Use the O(n + t) randomised algorithm to find t'. Recall, the algorithm checks whether $coeff(f, x^t) \neq 0$ where

$$f(x) = \prod_{i=1}^{n} (1 + x^{a_i})$$

To find *j*, use a different polynomial and binary search.

Unique-PSSUM for p = 1**Theorem:** There is an $\tilde{O}(n + t)$ randomised time algorithm.

Input: a_1, \ldots, a_n, t

- Find t' such that
- 1. there exists $S \in [n]$ and $\sum a_i = t'$. $i \in S$ 2. |t - t'| is minimised.

Let $j \in S$. We define

 $x_i := a_i, \forall i \in [n] \setminus \{j\}$

$$x_j := a_j + t - t'$$

Use the O(n + t) randomised algorithm to find t'. Recall, the algorithm checks whether $coeff(f, x^t) \neq 0$ where

$$f(x) = \prod_{i=1}^{n} (1 + x^{a_i})$$

To find *j*, use a different polynomial and binary search.

$$g(x) = \prod_{i=1}^{n/2} (1 + 2x^{a_i}) \prod_{i=n/2+1}^{n} (1 + x^{a_i})$$

Reduction from Unbounded Subset Sum to Closest Vector Problem

Lattice

A lattice generated by a set of linearly independent vectors $B = \{b_1, \dots, b_n\}$ is the set of all *integer linear combinations* of $\{b_1, \dots, b_n\}$, i.e.,

Lattice

 $\{b_1, \dots, b_n\}$, i.e.,

 $\mathcal{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$ i=1

Lattice

A lattice generated by a set of linearly independent vectors $B = \{b_1, \dots, b_n\}$ is the set of all *integer linear combinations* of

i=1

 $\{b_1, \dots, b_n\}$, i.e.,

B is called a *basis* of \mathscr{L} .

Lattice

A lattice generated by a set of linearly independent vectors $B = \{b_1, \dots, b_n\}$ is the set of all *integer linear combinations* of

$\mathscr{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$

Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

such that v is closest to t, i.e.,

Given a basis $B = \{b_1, \dots, b_n\}$ and a target $t \in \mathbb{R}^n$, find a vector $v \in \mathscr{L}(B)$

 $|v-t| \leq |u-t|, \forall u \in \mathscr{L}(B)$

UBSSUM to CVP_{∞}

UBSSUM to CVP_{∞}

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

UBSSUM to CVP

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

UBSSUM to CVP

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

Assume, CVP is **YES**, then this implies that $\exists x$ such that $||t - Bx||_{\infty} \leq b$.

$$\begin{bmatrix} b \\ b \\ \vdots \\ b \\ \lambda b \end{bmatrix}, d = b, t - Bx = \begin{bmatrix} b - x_1 \\ b - x_2 \\ \vdots \\ b - x_n \\ \lambda (b - \sum a_i x_i) \end{bmatrix}$$

UBSSUM to CVP

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

Assume, CVP is **YES**, then this implies that $\exists x$ such that $||t - Bx||_{\infty} \leq b$.

Since, λ is very large, this implies $(t - Bx)_{n+1} = 0 \implies \vec{a} \cdot x = b$. Also, $x_i \ge 0$.

$$\begin{bmatrix} b \\ b \\ \vdots \\ b \\ \lambda b \end{bmatrix}, d = b, t - Bx = \begin{bmatrix} b - x_1 \\ b - x_2 \\ \vdots \\ b - x_n \\ \lambda (b - \sum a_i x_i) \end{bmatrix}$$

UBSSUM to CVP_1

UBSSUM to CVP_1

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

UBSSUM to CVP_1

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

$$B = \begin{bmatrix} -a_1 & 0 & \cdots & 0 \\ 0 & -a_2 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & -a_n \\ \lambda a_1 & \lambda a_2 & \cdots & \lambda a_n \end{bmatrix}, t =$$

UBSSUM to **CVP**₁

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

$$B = \begin{bmatrix} -a_1 & 0 & \cdots & 0 \\ 0 & -a_2 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & -a_n \\ \lambda a_1 & \lambda a_2 & \cdots & \lambda a_n \end{bmatrix}, t = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \lambda b \end{bmatrix}, d = b, t - Bx = \begin{bmatrix} a_1 x_1 \\ a_2 x_2 \\ \vdots \\ a_n x_n \\ \lambda (b - \sum a_i x_i) \end{bmatrix}$$

Assume, CVP is **YES**, then this implies that $\exists x$ such that $||t - Bx||_1 \le b$.

UBSSUM to CVP₁

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

$$B = \begin{bmatrix} -a_1 & 0 & \cdots & 0 \\ 0 & -a_2 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & -a_n \\ \lambda a_1 & \lambda a_2 & \cdots & \lambda a_n \end{bmatrix}, t = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \lambda b \end{bmatrix}, d = b, t - Bx = \begin{bmatrix} a_1 x_1 \\ a_2 x_2 \\ \vdots \\ a_n x_n \\ \lambda (b - \sum a_i x_i) \end{bmatrix}$$

Assume, CVP is **YES**, then this implies that $\exists x$ such that $||t - Bx||_1 \le b$.

Since, λ is very large, this implies $(t - Bx)_{n+1} = 0 \implies \overrightarrow{a} \cdot x = b$. Also,

UBSSUM to CVP₁

Input: Unbounded subset sum instance a_1, \ldots, a_n, t

$$B = \begin{bmatrix} -a_1 & 0 & \cdots & 0 \\ 0 & -a_2 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & -a_n \\ \lambda a_1 & \lambda a_2 & \cdots & \lambda a_n \end{bmatrix}, t = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \lambda b \end{bmatrix}, d = b, t - Bx = \begin{bmatrix} a_1 x_1 \\ a_2 x_2 \\ \vdots \\ a_n x_n \\ \lambda (b - \sum a_i x_i) \end{bmatrix}$$

Assume, CVP is **YES**, then this implies that $\exists x$ such that $||t - Bx||_1 \le b$.

Since, λ is very large, this implies $(t - Bx)_{n+1} = 0 \implies \overrightarrow{a} \cdot x = b$. Also,

$$b \ge \sum_{i=1}^{n} |a_i x_i| =$$

 $\sum_{i=1}^{n} a_i |x_i| \ge \sum_{i=1}^{n} a_i x_i = b$ i=1 $i=1_{20}$

• There is an $\tilde{O}(k(n + t))$ time deterministic algorithm for Hamming-k -SUBSSUM (ask to return all $\sum eta_i$ where the number of solutions is $i \in [n]$

atmost k)

- There is an O(k(n + t)) time deterministic algorithm for Hamming-k -SUBSSUM (ask to return all $\sum eta_i$ where the number of solutions is $i \in [n]$
 - atmost k)
- There is a poly(knt)-time and O(log(knt))-space deterministic algorithm which solves k-SUBSSUM (ask to return all $(\beta_1, \ldots, \beta_n)$ where the number of solutions is atmost k)

• We saw an O(nt) and $\tilde{O}(n + t)$ time algorithm for unique-PSSUM₁.

- We saw an O(nt) and $\tilde{O}(n + t)$ time algorithm for unique-PSSUM₁.
- We saw reductions from UBSSUM to CVP.

- We saw an O(nt) and $\tilde{O}(n + t)$ time algorithm for unique-PSSUM₁.
- We saw reductions from UBSSUM to CVP.
- Can we find an $\tilde{O}(n + t)$ time algorithm for PSSUM₁.

- We saw an O(nt) and O(n + t) time algorithm for unique-PSSUM₁.
- We saw reductions from UBSSUM to CVP.
- Can we find an $\tilde{O}(n + t)$ time algorithm for PSSUM₁.
- Extend it to other values of p?

Thank You!