On the Variants of Subset Sum:
Projected and Unbounded

Pranjal Dutta (NUS), Mahesh Sreekumar Rajasree (l/ITD)

SYNASC 2023






e |ntroduction



e |ntroduction

« Randomized é(n + t) algorithm for Unique Projection Subset Sum



e |ntroduction

« Randomized é(n + t) algorithm for Unique Projection Subset Sum

e Reduction from Unbounded Subset Sum to Closest Vector Problem



Introduction

Randomized é(n + t) algorithm for Unique Projection Subset Sum

Reduction from Unbounded Subset Sum to Closest Vector Problem

Other Results



Introduction

Randomized é(n + t) algorithm for Unique Projection Subset Sum
Reduction from Unbounded Subset Sum to Closest Vector Problem
Other Results

Conclusion



Introduction



Introduction



Introduction

Subset Sum Problem (SSUM) - Given a,, ...,a,,t € Z., decide
whether there exist S C [7n]| such that



Introduction

Subset Sum Problem (SSUM) - Given a,, ...,a,,t € Z., decide
whether there exist S C [7n]| such that

S

€5



Introduction

Subset Sum Problem (SSUM) - Given a,, ...,a,,t € Z., decide
whether there exist S C [7n]| such that

Sa=t
J=h)

NP complete problem.



Introduction

Subset Sum Problem (SSUM) - Given a,, ...,a,,t € Z., decide
whether there exist S C [7n]| such that

S

IES
NP complete problem.

O(nt) time algorithm due to Bellman.



Introduction

Subset Sum Problem (SSUM) - Given a,, ...,a,,t € Z., decide
whether there exist S C [7n]| such that

S

IES
NP complete problem.

O(nt) time algorithm due to Bellman.

Randomized O(n + t) time algorithm due to [Jin & Wu,Bringmann].



Introduction



Introduction

Unbounded Subset Problem (UBSSUM) - Given a,, ...,a,,1 € Z,
decide whether there exist /), ..., J, € Z- such that



Introduction

Unbounded Subset Problem (UBSSUM) - Given a,, ...,a,,1 € Z,
decide whether there exist /), ..., J, € Z- such that

i b;-a) =t
i=1



Introduction

Unbounded Subset Problem (UBSSUM) - Given a,, ...,a,,1 € Z,
decide whether there exist /), ..., J, € Z- such that

i b;-a) =t
i=1

NP-complete problem. O(nt) time algorithm due to Bellman.



Introduction

Unbounded Subset Problem (UBSSUM) - Given a,, ...,a,,1 € Z,
decide whether there exist /), ..., J, € Z- such that

i b;-a) =t
i=1

NP-complete problem. O(nt) time algorithm due to Bellman.

Randomized O(n + ) time algorithm.



Introduction



Introduction

Projection Subset Problem (PSSUI\/Ip) - Given ay, ...,a,,1 € Z.and
p, find x;, ..., x, € Z such that there exists S C [n]



Introduction

Projection Subset Problem (PSSUMp) - Given ay, ...,a,,1 € Z.and
p, find x;, ..., x, € Z such that there exists S C [n]

> =

=N



Introduction

Projection Subset Problem (PSSUMp) - Given ay, ...,a,,1 € Z.and
p, find x;, ..., x, € Z such that there exists S C [n]

IR

€S

|| a — X \pis minimised



Introduction

Projection Subset Problem (PSSUMp) - Given ay, ...,a,,1 € Z.and
p, find x;, ..., x, € Z such that there exists S C [n]

IR

€S
|| a — X \pis minimised

NP-complete problem.



Introduction

Projection Subset Problem (PSSUMp) - Given ay, ...,a,,1 € Z.and
p, find x;, ..., x, € Z such that there exists S C [n]

> =

IES
| a — x les minimised
NP-complete problem.

O(nt) time algorithm?



O(n + t) algorithm for SSUM



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that

Y=

€5



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that
> =
€5

Consider



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that
> =
€5

Consider

o =[] +x%

1€|n]



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that
> =
€5

Consider

foo =[] 1 +x9

1€|n]

Claim:- (a,,...,a,,t) € SSUM < coeff(f,x") # 0

v



O(n + t) algorithm for SSUM

Given a,, ...,a,,t € Z-, decide whether there exist 5 C 7] such that
S o=
€S

Consider

foo =[] 1 +x9

1€|n]
Claim:- (a,,...,a,,t) € SSUM < coeff(f,x") # 0

fX)=1+x4+ ... +x% 4 x4T%2 4 x4Th 4 4 xhThrT4

v



Randomized O(n + ¢t) algorithm
for Unigue Projection Subset Sum



Projection SSUM



Projection SSUM

Projection Subset Problem (PSSUI\/Ip) - Givenay, ...,a,,1 € Zzo and p, find
Xy, ...,X, € Z such that there exists S C [n]



Projection SSUM

Projection Subset Problem (PSSUI\/Ip) - Givenay, ...,a,,1 € Zzo and p, find
Xy, ...,X, € Z such that there exists S C [n]

IERY

€S



Projection SSUM

Projection Subset Problem (PSSUI\/Ip) - Givenay, ...,a,,1 € Zzo and p, find
Xy, ...,X, € Z such that there exists S C [n]



Projection SSUM

Projection Subset Problem (PSSUI\/Ip) - Givenay, ...,a,,1 € Zzo and p, find
Xy, ...,X, € Z such that there exists S C [n]

PSSUM is such that any valid subset sum t’, there exists a
l.e.,



Projection SSUM

Projection Subset Problem (PSSUI\/Ip) - Givenay, ...,a,,1 € Zzo and p, find
Xy, ...,X, € Z such that there exists S C [n]

l.e.,



Unique-PSSUM for p = 1



Uni
qu
e-PSSUM f
or p
= ]

In
PUL.
tta,...,a

” nat



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that



Unique-PSSUM for p = 1

Input: a,, ...,a,.1
Find 7’ such that

1. there exists § C [n] and Z a =1

€S



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find ¢’ such that
1. there exists § C [n] and Z a =1

€S
2. |t —1"| is minimised.

10



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that

1. there exists § C [n] and Z a =1
€S
2. |t —1"| is minimised.

Let ] € S. We define

10



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that

1. there exists § C [n] and Z a =1
€S
2. |t —1"| is minimised.

Let ; € 5. We define

x; = a, Vi € [n]\{J}

10



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that

1. there exists § C [n] and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a,, ...,a,,t
Vi, ... Y, Such that

s Yo

Find 7’ such that

1. there exists § C [n] and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a, ...,a, .t
° 1 ’ Vi, ... Y, Such that
Find 7" such that
2=
1. there exists $ C |n] and 2 a.=t. i€T

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{j}

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a, ...,a, .t
° 1 ’ Vi, ... Y, Such that
Find 7" such that
2=
1. there exists $ C |n] and 2 a.=t. i€T

€5 7__’ < 7_7
2. |t—1'| is minimised. 1 Y Hl | Hl

Let ] € S. We define

x; = a, Vi € [n]\{j}

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a, ...,a, .t
° 1 ’ Vi, ... Y, Such that
Find 7" such that
2=
1. there exists $ C |n] and 2 a.=t. i€T

€5 7__’ < 7_7
2. |t—1'| is minimised. 1 Y Hl | Hl

. then, we can show that
Let ] € S. We define

x; = a, Vi € [n]\{j}

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a, ...,a, .t
° 1 ’ Vi, ... Y, Such that
Find 7" such that
2=
1. there exists $ C |n] and 2 a.=t. i€T

2. |t—1'| is minimised. 1 Y Hl | Hl

then, we can show that

Y oa—t|<|t—1

x.:=a,Vi € [n\{j} T

Let ] € S. We define

10



Unique-PSSUM for p = 1

Suppose there is a better solution, I.e. ,

Input: a, ...,a, .t
° 1 ’ Vi, ... Y, Such that
Find 7" such that
2=
1. there exists $ C |n] and 2 a.=t. i€T

2. |t—1'| is minimised. 1 Y Hl | Hl

then, we can show that

Y oa—t|<|t—1

x.:=a,Vi € [n\{j} T

Let ] € S. We define

Xx.'=a.4+t—1 Claim: ¢’ < 2¢
j = .



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that

1. there exists $ € [n]| and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

11



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Theorem: There is an O(nt) deterministic

Find ¢’ such that . .
time algorithm.

1. there exists $ € [n]| and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

11



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Theorem: There is an O(nt) deterministic

Find ¢’ such that . .
time algorithm.

1. there exists § € [n] and Z 4; =T- Run Bellman’s algorithm upto 2t to find

o i€S the closest 7.
2. |t —1t'| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{j}

11



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Theorem: There is an O(nt) deterministic

Find ¢’ such that . .
time algorithm.

1. there exists § € [n] and Z 4; =T- Run Bellman’s algorithm upto 2t to find

o i€S the closest 7.
2. |t —1t'| is minimised.

, | To find 7, update the table with additional
Let ; € 5. We define formations.

x; = a, Vi € [n]\{j}

11



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Theorem: There is an O(nt) deterministic

Find ¢’ such that . .
time algorithm.

1. there exists § € [n] and Z 4; =T- Run Bellman’s algorithm upto 2t to find

o i€S the closest 7.
2. |t —1t'| is minimised.

, | To find 7, update the table with additional
Let ; € 5. We define formations.

x; = a, Vi € [n]\{j}

11



Unique-PSSUM for p = 1

Input: a,, ...,a,.1

Find 7’ such that

1. there exists $ € [n]| and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

12



Unique-PSSUM for p = 1

Theorem: There is an O(n + 1)
Input: a,, ...,a,,1 randomised time algorithm.

Find 7’ such that

1. there exists $ € [n]| and Z a =1

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

12



Unique-PSSUM for p = 1

Theorem: There is an O(n + 1)
Input: a,, ...,a,,1 randomised time algorithm.

Find 7" such that Use the O(n + 1) randomised algorithm
to find ¢'. Recall, the algorithm checks

[
1. there exists S € [n] and Z a. = . Whether coefj(J,x’) # 0 where

€S
2. |t —1"| is minimised.

Let ] € S. We define

x; = a, Vi € [n]\{J}

12



Unique-PSSUM for p = 1

Theorem: There is an O(n + 1)
Input: a,, ...,a,,1 randomised time algorithm.

Find 7" such that Use the O(n + 1) randomised algorithm
to find ¢'. Recall, the algorithm checks

[
1. there exists S € [n] and Z a.=t. whether coeff(}, x') 7 0 where
€S

2. |t —1"| is minimised. f(x) = H(l + x%)
i=1

Let ] € S. We define

x; = a, Vi € [n]\{J}

12



Unique-PSSUM for p = 1

Theorem: There is an O(n + 1)
Input: a,, ...,a,,1 randomised time algorithm.

Find 7" such that Use the O(n + 1) randomised algorithm
to find ¢'. Recall, the algorithm checks

[
1. there exists S € [n] and Z a. = . Whether coefj(J,x’) # 0 where

ieS k
2. |t —1'| is minimised. f(x) = H(l + x%)
i=1
Let ] € S. We define To find j, use a different polynomial and

binary search.

x; = a, Vi € [n]\{J}

12



Unique-PSSUM for p = 1

Theorem: There is an O(n + 1)

Input: a,, ...,a,,1 randomised time algorithm.

Find 7" such that Use the O(n + 1) randomised algorithm
to find ¢'. Recall, the algorithm checks

[
1. there exists S € [n] and Z a.=t. whether coeff(}, x') 7 0 where
€S

2. |t —1"| is minimised. f(x) = H(l + x%)

=1
Let ] € S. We define To find j, use a different polynomial and
binary search.

x.:=a,Vi € [n\{j} I
Xx.'=a.-+1t—1 g()C)—H(l-I-Zxa) H (1+Xa)

/ / 12 i=n/2+1



Reduction from Unbounded Subset
Sum to Closest Vector Problem






Lattice

A lattice generated by a set of linearly independent vectors
B=1{b,....,b,} is the set of all integer linear combinations of

\by,....b, 1}, e,

14



Lattice

A lattice generated by a set of linearly independent vectors
B=1{b,....,b,} is the set of all integer linear combinations of

\by,....b, 1}, e,

L(by,....b)={ ) zb; | V(z,....7,) € Z")
=1

14



Lattice

A lattice generated by a set of linearly independent vectors
B=1{b,....,b,} is the set of all integer linear combinations of

\by,....b, 1}, e,

L(by,....b)={ ) zb; | V(z,....7,) € Z")
=1

B is called a basis of £.

14



15



15



15



15



15



15



16



16



Closest Vector Problem (CVP)



Closest Vector Problem (CVP)

Given a basis B = {by, ..., b, } and a target € R", find a vector v € £ (B)
such that v is closest to 7, I.e.,

[lv—=1]| < lu—t]|],Vu e Z(B)
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. There is an O(k(n + 1)) time deterministic algorithm for Hamming-k
-SUBSSUM (ask to return all Z p: where the number of solutions is

i€[n]
atmost k)

» Thereis a poly(knt)-time and O(log(knt))-space deterministic algorithm
which solves k-SUBSSUM (ask to return all (4, ..., /) where the number

of solutions is atmost k)
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Conclusion

We saw an O(nt) and O(n + 1) time algorithm for unique-PSSUM;.

We saw reductions from UBSSUM to CVP.

Can we find an O(n + 1) time algorithm for PSSUM;.

Extend it to other values of p?
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