
On the Variants of Subset Sum: 
Projected and Unbounded
Pranjal Dutta (NUS), Mahesh Sreekumar Rajasree (IITD)


SYNASC 2023

1



2



• Introduction

2



• Introduction

• Randomized  algorithm for Unique Projection Subset SumÕ(n + t)

2



• Introduction

• Randomized  algorithm for Unique Projection Subset SumÕ(n + t)

• Reduction from Unbounded Subset Sum to Closest Vector Problem

2



• Introduction

• Randomized  algorithm for Unique Projection Subset SumÕ(n + t)

• Reduction from Unbounded Subset Sum to Closest Vector Problem

• Other Results

2



• Introduction

• Randomized  algorithm for Unique Projection Subset SumÕ(n + t)

• Reduction from Unbounded Subset Sum to Closest Vector Problem

• Other Results

• Conclusion

2



Introduction

3



Introduction

4



Introduction
Subset Sum Problem (SSUM) - Given , decide 
whether there exist  such that

a1, …, an, t ∈ ℤ≥0
S ⊆ [n]

4



Introduction
Subset Sum Problem (SSUM) - Given , decide 
whether there exist  such that

a1, …, an, t ∈ ℤ≥0
S ⊆ [n]

∑
i∈S

ai = t

4



Introduction
Subset Sum Problem (SSUM) - Given , decide 
whether there exist  such that

a1, …, an, t ∈ ℤ≥0
S ⊆ [n]

∑
i∈S

ai = t

NP complete problem.

4



Introduction
Subset Sum Problem (SSUM) - Given , decide 
whether there exist  such that

a1, …, an, t ∈ ℤ≥0
S ⊆ [n]

∑
i∈S

ai = t

NP complete problem.

 time algorithm due to Bellman.O(nt)

4



Introduction
Subset Sum Problem (SSUM) - Given , decide 
whether there exist  such that

a1, …, an, t ∈ ℤ≥0
S ⊆ [n]

∑
i∈S

ai = t

NP complete problem.

 time algorithm due to Bellman.O(nt)

Randomized  time algorithm due to [Jin & Wu,Bringmann]. Õ(n + t)

4



Introduction

5



Introduction
Unbounded Subset Problem (UBSSUM) - Given , 
decide whether there exist  such that

a1, …, an, t ∈ ℤ≥0
β1, …, βn ∈ ℤ≥0

5



Introduction
Unbounded Subset Problem (UBSSUM) - Given , 
decide whether there exist  such that

a1, …, an, t ∈ ℤ≥0
β1, …, βn ∈ ℤ≥0

n

∑
i=1

(βi ⋅ ai) = t

5



Introduction
Unbounded Subset Problem (UBSSUM) - Given , 
decide whether there exist  such that

a1, …, an, t ∈ ℤ≥0
β1, …, βn ∈ ℤ≥0

n

∑
i=1

(βi ⋅ ai) = t

NP-complete problem.  time algorithm due to Bellman.O(nt)

5



Introduction
Unbounded Subset Problem (UBSSUM) - Given , 
decide whether there exist  such that

a1, …, an, t ∈ ℤ≥0
β1, …, βn ∈ ℤ≥0

n

∑
i=1

(βi ⋅ ai) = t

NP-complete problem.  time algorithm due to Bellman.O(nt)

Randomized  time algorithm.Õ(n + t)

5



Introduction

6



Introduction
Projection Subset Problem (PSSUM ) - Given  and 

, find  such that there exists 
p a1, …, an, t ∈ ℤ≥0

p x1, …, xn ∈ ℤ S ⊆ [n]

6



Introduction
Projection Subset Problem (PSSUM ) - Given  and 

, find  such that there exists 
p a1, …, an, t ∈ ℤ≥0

p x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

6



Introduction
Projection Subset Problem (PSSUM ) - Given  and 

, find  such that there exists 
p a1, …, an, t ∈ ℤ≥0

p x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

6



Introduction
Projection Subset Problem (PSSUM ) - Given  and 

, find  such that there exists 
p a1, …, an, t ∈ ℤ≥0

p x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

NP-complete problem. 

6



Introduction
Projection Subset Problem (PSSUM ) - Given  and 

, find  such that there exists 
p a1, …, an, t ∈ ℤ≥0

p x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

NP-complete problem. 

 time algorithm?O(nt)

6



 algorithm for SSUMÕ(n + t)

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

∑
i∈S

ai = t

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

∑
i∈S

ai = t

Consider

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

∑
i∈S

ai = t

Consider

f(x) = ∏
i∈[n]

(1 + xai)

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

∑
i∈S

ai = t

Consider

f(x) = ∏
i∈[n]

(1 + xai)

Claim:- (a1, …, an, t) ∈ SSUM ⟺ coeff( f, xt) ≠ 0

7



 algorithm for SSUMÕ(n + t)
Given , decide whether there exist  such thata1, …, an, t ∈ ℤ≥0 S ⊆ [n]

∑
i∈S

ai = t

Consider

f(x) = ∏
i∈[n]

(1 + xai)

Claim:- (a1, …, an, t) ∈ SSUM ⟺ coeff( f, xt) ≠ 0

f(x) = 1 + xa1 + … + xan + xa1+a2 + xa1+a3 + … + xa1+a2+…+an
7



Randomized  algorithm 
for Unique Projection Subset Sum

Õ(n + t)

8



Projection SSUM

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

UNIQUE PSSUM is such that any valid subset sum , there exists a unique , 
i.e., 

t′ S

9



Projection SSUM
Projection Subset Problem (PSSUM ) - Given  and , find 

 such that there exists 
p a1, …, an, t ∈ ℤ≥0 p

x1, …, xn ∈ ℤ S ⊆ [n]

∑
i∈S

xi = t

is minimised| | ⃗a − ⃗x | |p

UNIQUE PSSUM is such that any valid subset sum , there exists a unique , 
i.e., 

t′ S

 

∑
i∈S

ai = t′ 

9



Unique-PSSUM for p = 1

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

|∑
i∈T

ai − t | < | t − t′ |

10



Unique-PSSUM for p = 1
Input: a1, …, an, t

Find  such that t′ 

1. there exists  and .S ⊆ [n] ∑
i∈S

ai = t′ 

2.  is minimised.| t − t′ |

Let . We definej ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Suppose there is a better solution, i.e. , 
 such that y1, …, yn

∑
i∈T

yi = t

| | ⃗a − ⃗y | |1 < | | ⃗a − ⃗x | |1

then, we can show that 

|∑
i∈T

ai − t | < | t − t′ |

Claim: t′ ≤ 2t
10



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

To find , update the table with additional 
informations.

j

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  deterministic 
time algorithm.

O(nt)

Run Bellman’s algorithm upto  to find 
the closest .

2t
t′ 

To find , update the table with additional 
informations.

j

11



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.

Õ(n + t)

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.

Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where

Õ(n + t)
t′ 

coeff( f, xt) ≠ 0

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.

Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where

Õ(n + t)
t′ 

coeff( f, xt) ≠ 0

f(x) =
n

∏
i=1

(1 + xai)

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.

Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where

Õ(n + t)
t′ 

coeff( f, xt) ≠ 0

f(x) =
n

∏
i=1

(1 + xai)

To find , use a different polynomial and 
binary search.

j

12



Unique-PSSUM for p = 1
Input: 


Find  such that 


1. there exists  and .


2.  is minimised.


Let . We define





a1, …, an, t

t′ 

S ∈ [n] ∑
i∈S

ai = t′ 

| t − t′ |

j ∈ S

xi := ai, ∀i ∈ [n]∖{j}

xj := aj + t − t′ 

Theorem: There is an  
randomised time algorithm.

Õ(n + t)

Use the  randomised algorithm 
to find . Recall, the algorithm checks 
whether  where

Õ(n + t)
t′ 

coeff( f, xt) ≠ 0

f(x) =
n

∏
i=1

(1 + xai)

To find , use a different polynomial and 
binary search.

j

g(x) =
n/2

∏
i=1

(1 + 2xai)
n

∏
i=n/2+1

(1 + xai)
12



Reduction from Unbounded Subset 
Sum to Closest Vector Problem

13



Lattice

14



Lattice

A lattice generated by a set of linearly independent vectors 
 is the set of all integer linear combinations of 

, i.e., 
B = {b1, …, bn}
{b1, …, bn}

14



Lattice

A lattice generated by a set of linearly independent vectors 
 is the set of all integer linear combinations of 

, i.e., 
B = {b1, …, bn}
{b1, …, bn}

ℒ(b1, …, bn) = {
n

∑
i=1

zibi | ∀(z1, …, zn) ∈ ℤn}

14



Lattice

A lattice generated by a set of linearly independent vectors 
 is the set of all integer linear combinations of 

, i.e., 
B = {b1, …, bn}
{b1, …, bn}

ℒ(b1, …, bn) = {
n

∑
i=1

zibi | ∀(z1, …, zn) ∈ ℤn}

 is called a basis of .B ℒ

14



b1

b2

15



b1

b2

15



b1

b2

15



b1

b2

15



b1

b2

15



b1

b2

15



16



b′ 1

b′ 2

16



Closest Vector Problem (CVP)

17



Closest Vector Problem (CVP)

Given a basis  and a target , find a vector  
such that  is closest to , i.e., 


B = {b1, …, bn} t ∈ ℝn v ∈ ℒ(B)
v t

| |v − t | | ≤ | |u − t | | , ∀u ∈ ℒ(B)

17



18



18



t

18



t
v

18



t
v

18



t
v

b1

18



t
v

b1 b2

18



UBSSUM to CVP∞

19



UBSSUM to CVP∞
Input: Unbounded subset sum instance a1, …, an, t

19



UBSSUM to CVP∞
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0 0 ⋯ 1

λa1 λa2 ⋯ λan

t =

b
b
⋮
b
λb

d = b t − Bx =

b − x1

b − x2
⋮

b − xn

λ(b − ∑ aixi)

19



UBSSUM to CVP∞
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0 0 ⋯ 1

λa1 λa2 ⋯ λan

t =

b
b
⋮
b
λb

d = b t − Bx =

b − x1

b − x2
⋮

b − xn

λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |∞ ≤ b

19



UBSSUM to CVP∞
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0 0 ⋯ 1

λa1 λa2 ⋯ λan

t =

b
b
⋮
b
λb

d = b t − Bx =

b − x1

b − x2
⋮

b − xn

λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |∞ ≤ b

Since,  is very large, this implies . Also, .λ (t − Bx)n+1 = 0 ⟹ ⃗a ⋅ x = b xi ≥ 0

19



UBSSUM to CVP1

20



UBSSUM to CVP1
Input: Unbounded subset sum instance a1, …, an, t

20



UBSSUM to CVP1
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

−a1 0 ⋯ 0
0 −a2 ⋯ 0
⋮
0 0 ⋯ −an

λa1 λa2 ⋯ λan

t =

0
0
⋮
0
λb

d = b t − Bx =

a1x1
a2x2

⋮
anxn

λ(b − ∑ aixi)

20



UBSSUM to CVP1
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

−a1 0 ⋯ 0
0 −a2 ⋯ 0
⋮
0 0 ⋯ −an

λa1 λa2 ⋯ λan

t =

0
0
⋮
0
λb

d = b t − Bx =

a1x1
a2x2

⋮
anxn

λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |1 ≤ b

20



UBSSUM to CVP1
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

−a1 0 ⋯ 0
0 −a2 ⋯ 0
⋮
0 0 ⋯ −an

λa1 λa2 ⋯ λan

t =

0
0
⋮
0
λb

d = b t − Bx =

a1x1
a2x2

⋮
anxn

λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |1 ≤ b

Since,  is very large, this implies . Also,λ (t − Bx)n+1 = 0 ⟹ ⃗a ⋅ x = b

20



UBSSUM to CVP1
Input: Unbounded subset sum instance a1, …, an, t

, , , B =

−a1 0 ⋯ 0
0 −a2 ⋯ 0
⋮
0 0 ⋯ −an

λa1 λa2 ⋯ λan

t =

0
0
⋮
0
λb

d = b t − Bx =

a1x1
a2x2

⋮
anxn

λ(b − ∑ aixi)

Assume, CVP is YES, then this implies that  such that . ∃x | | t − Bx | |1 ≤ b

Since,  is very large, this implies . Also,λ (t − Bx)n+1 = 0 ⟹ ⃗a ⋅ x = b

b ≥
n

∑
i=1

|aixi | =
n

∑
i=1

ai |xi | ≥
n

∑
i=1

aixi = b
20



Other Results

21



Other Results

22



Other Results

• There is an  time deterministic algorithm for Hamming-
-SUBSSUM (ask to return all  where the number of solutions is 

atmost )

Õ(k(n + t)) k

∑
i∈[n]

βi

k

22



Other Results

• There is an  time deterministic algorithm for Hamming-
-SUBSSUM (ask to return all  where the number of solutions is 

atmost )

Õ(k(n + t)) k

∑
i∈[n]

βi

k

• There is a -time and -space deterministic algorithm 
which solves -SUBSSUM (ask to return all  where the number 
of solutions is atmost )

poly(knt) O(log(knt))
k (β1, …, βn)

k

22



Conclusion

23



Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1

23



Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1

• We saw reductions from UBSSUM to CVP.

23



Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1

• We saw reductions from UBSSUM to CVP.

• Can we find an  time algorithm for PSSUM .Õ(n + t) 1

23



Conclusion

• We saw an  and  time algorithm for unique-PSSUM .O(nt) Õ(n + t) 1

• We saw reductions from UBSSUM to CVP.

• Can we find an  time algorithm for PSSUM .Õ(n + t) 1

• Extend it to other values of ?p

23



Thank You!

24


