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Bases of a lattice

 and  are bases of a lattice  where  is a 
unimodular matrix.
B B′￼ ℒ ⟺ B′￼ = BU U

A matrix  is unimodular if  and .U U ∈ ℤn×n det(U) = ± 1

Therefore, a lattice can have infinitely many bases!

B′￼ = BU, B = B′￼V ⟹ B′￼ = B′￼VU ⟹ I = VU .
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Applications

• Factoring rational polynomials.

• Integer linear programming.

• Cryptanalysis of RSA, knapsack cryptosystems.

• Building very strong cryptographic primitives (post-quantum).
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Closest Vector Problem (CVP)

Given a basis  and a target , find a vector 
 such that  is closest to , i.e., 


B = {b1, …, bn} t ∈ ℝn+1

v ∈ ℒ(B) v t

| |v − t | | ≤ | |u − t | | , ∀u ∈ ℒ(B)
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Facts about CVP
• CVP is NP-Complete under all norms.

• Al-most all other lattice problems reduces to CVP in polynomial time.

Algorithm Time Space

Enumeration

Sieving

Voronoi

Gaussian

nO(n) poly(n)

2O(n) 2O(n)

Õ(22n) Õ(2n)

2n+o(n) 2n+o(n)
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Maximum Distance Sublattice Problem

(MDSP)

• Given a basis  for an  dimensional lattice 
, find  such that is also a basis for 

and the distance  is maximum.


• Here, we call  the fixed vector.

[ ⃗v ∣ B] = { ⃗v , ⃗b1, …, ⃗bn} n + 1
ℒ B′￼ = { ⃗b′￼1, …, ⃗b′￼n} { ⃗v , ⃗b′￼1, …, ⃗b′￼n} ℒ

dist( ⃗v , span(B′￼))

⃗v
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Preliminaries

A dual lattice of a lattice  is a lattice  such thatℒ ℒ′￼

 
ℒ′￼ = {y | < x, y > ∈ ℤ, ∀x ∈ ℒ}

If  is a basis for , then  (dual of ) is a basis for .B ℒ B−T B ℒ′￼
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Theorem

There exist polynomial time rank and dimension preserving many-one 
(Karp) reductions between CVP and MDSP. 
 
Given an MDSP input , the CVP instance is the basis

 and target is  where  is the dual of 
.

[ ⃗v , ⃗b 1, …, ⃗b n]
[ ⃗d 1, …, ⃗d n] ⃗u [ ⃗u , ⃗d 1, …, ⃗d n]
[ ⃗v , ⃗b 1, …, ⃗b n]
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Observation
• Given an MDSP input , there is a solution of the form 

 where ’s are integers.
[ ⃗v , ⃗b 1, …, ⃗b n]

[ ⃗v , ⃗b 1 + x1 ⃗v , …, ⃗b n + xn ⃗v ] xi

• We are interested in the distance of  from the plane/subspace 
 where  is the spanned by .

⃗v
Px1,…,xn

Px1,…,xn
[ ⃗b 1 + x1 ⃗v , …, ⃗b n + xn ⃗v ]

• Lemma: Let  be an orthonormal basis. Then the 

distance of point  from  is  for any 

.

{ ⃗v , ⃗b1, …, ⃗bn}

⃗v Px1,…,xn
1/ 1 +

n

∑
i=1

x2
i

(x1, …, xn) ∈ ℝn
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Reduction
• Therorem: Let  be an orthogonal basis in which all but  are 

unit vectors. Then the distance of point  from  is 

 for any .

{ ⃗v , ⃗b1, …, ⃗bn} ⃗v
⃗v Px1,…,xn

∥ ⃗v ∥/ 1 + ∥ ⃗v ∥2
n

∑
i=1

x2
i (x1, …, xn) ∈ ℝn

• The MDSP input  needs not be orthogonal. Let  
be the orthogonal component of  perpendicular to . Let  
and  be the Gram Schmidt Orthonormalization of , i.e., .

{ ⃗v , ⃗b1, …, ⃗bn} ⃗b ′￼i = ⃗b i − γi ⃗v
⃗b i ⃗v B′￼ = [ ⃗b ′￼1, …, ⃗b ′￼n]

B′￼′￼ B′￼ B′￼′￼ = B′￼L

• The CVP instance is the basis  and target vector is .LT ⃗u = − LT ⃗γ
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Conclusion

• We looked into the definition of lattice, CVP, MDSP and Dual lattice.

• We saw equivalence between CVP and MDSP using dual lattice.

• We saw equivalence between CVP and MDSP without using dual lattice.

• What is the relation between the dual lattice and the lattice in the second 
reduction.



Thank You !


