On the Maximum Distance Sublattice Problem and Closest Vector Problem

Joint work with Rajendra Kumar (IITD) and Shashank K Mehta (IITK) **SYNASC 2024**

Mahesh Sreekumar Rajasree Department of Computer Science & Engineering IIT Delhi

Contents

- Introduction
- Equivalence Theorem using Dual Lattice
- Equivalence Theorem without using Dual Lattice.
- Conclusions

Introduction

Lattice

$\{b_1, \dots, b_n\}$, i.e.,

Lattice

A lattice generated by a set of linearly independent vectors

 $B = \{b_1, \dots, b_n\}$ is the set of all integer linear combinations of

A lattice generated by a set of linearly independent vectors $B = \{b_1, \ldots, b_n\}$ is the set of all integer linear combinations of $\{b_1, \ldots, b_n\}$, i.e.,

 $\mathcal{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$ i=1

Lattice

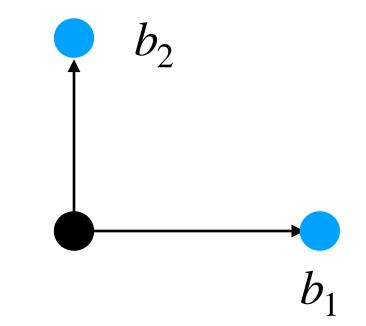
Lattice

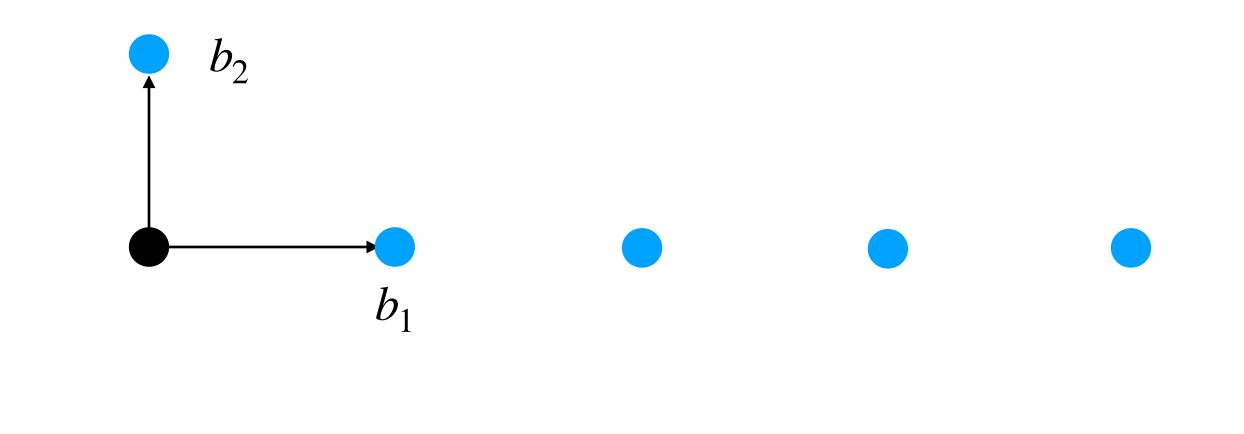
$\{b_1, \ldots, b_n\}$, i.e.,

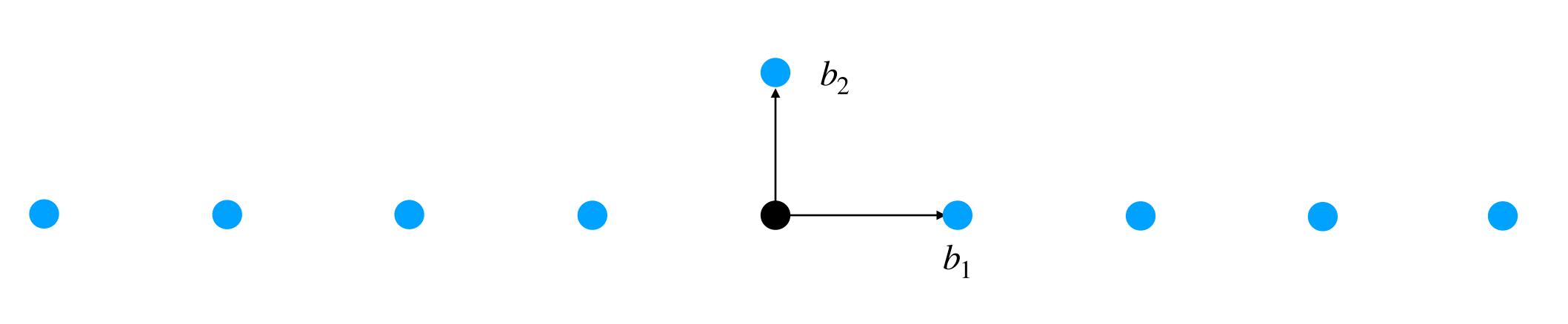
 $\mathcal{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$ i=1

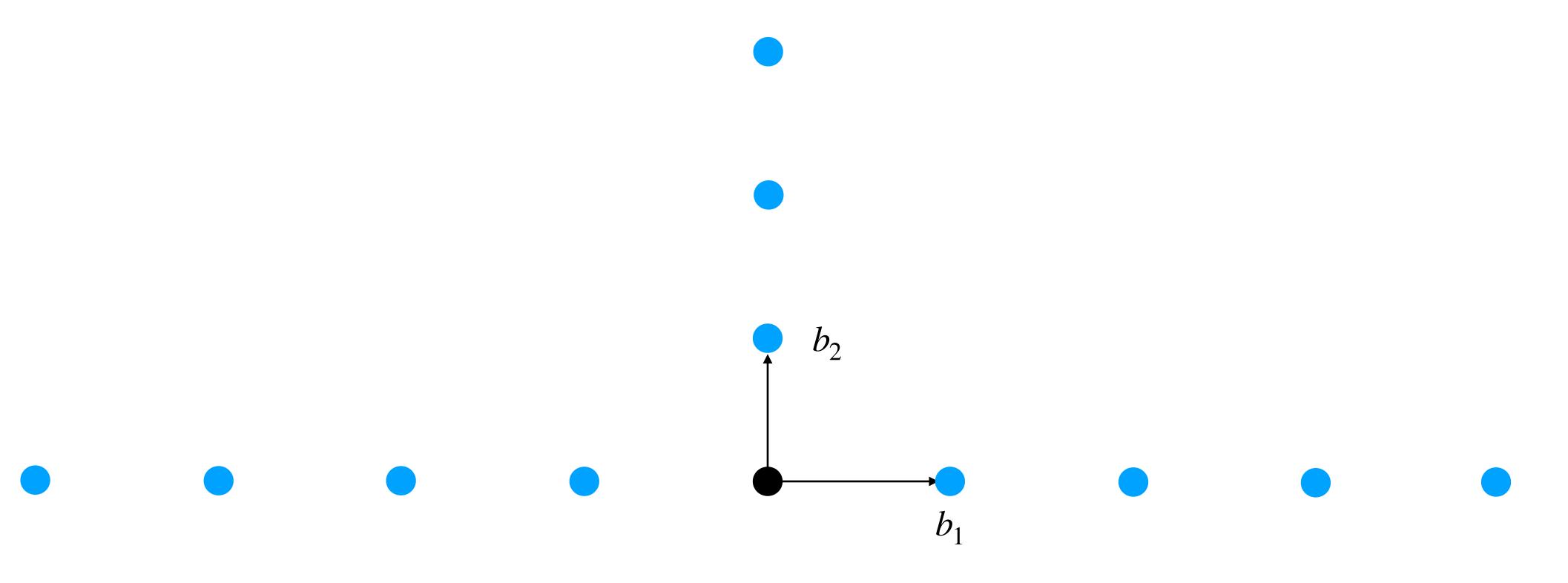
B is called a *basis* of \mathscr{L} .

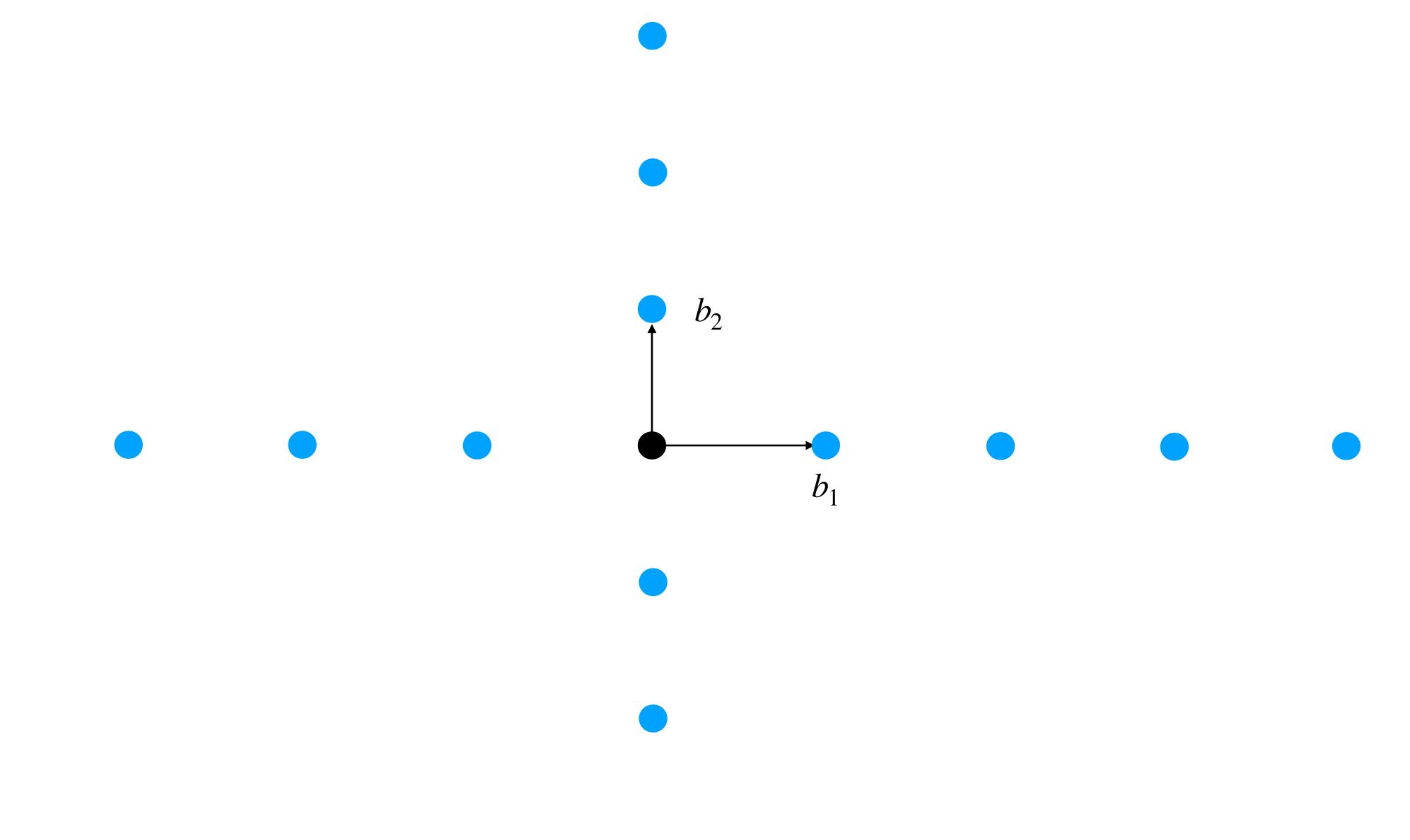
A lattice generated by a set of linearly independent vectors $B = \{b_1, \ldots, b_n\}$ is the set of all integer linear combinations of

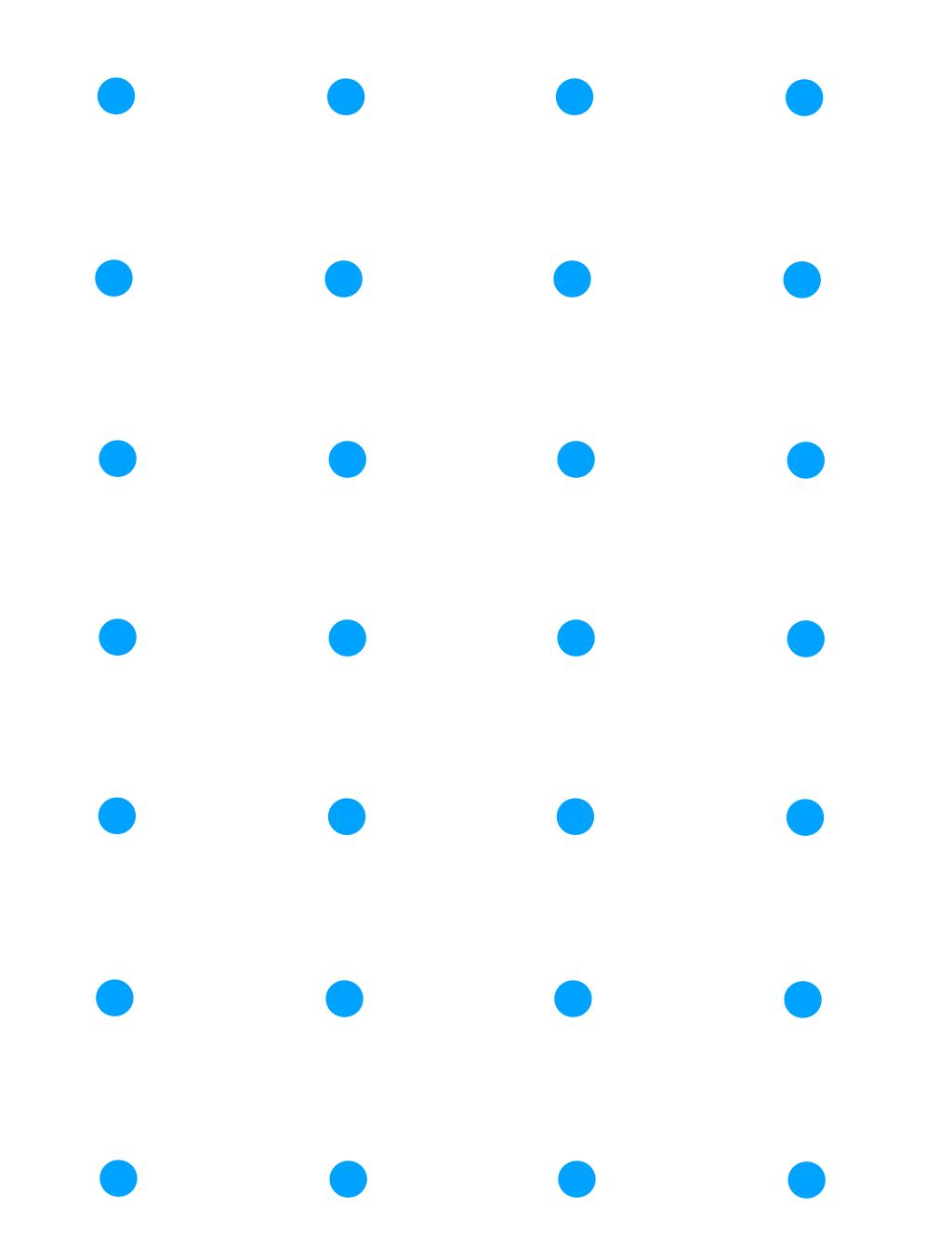


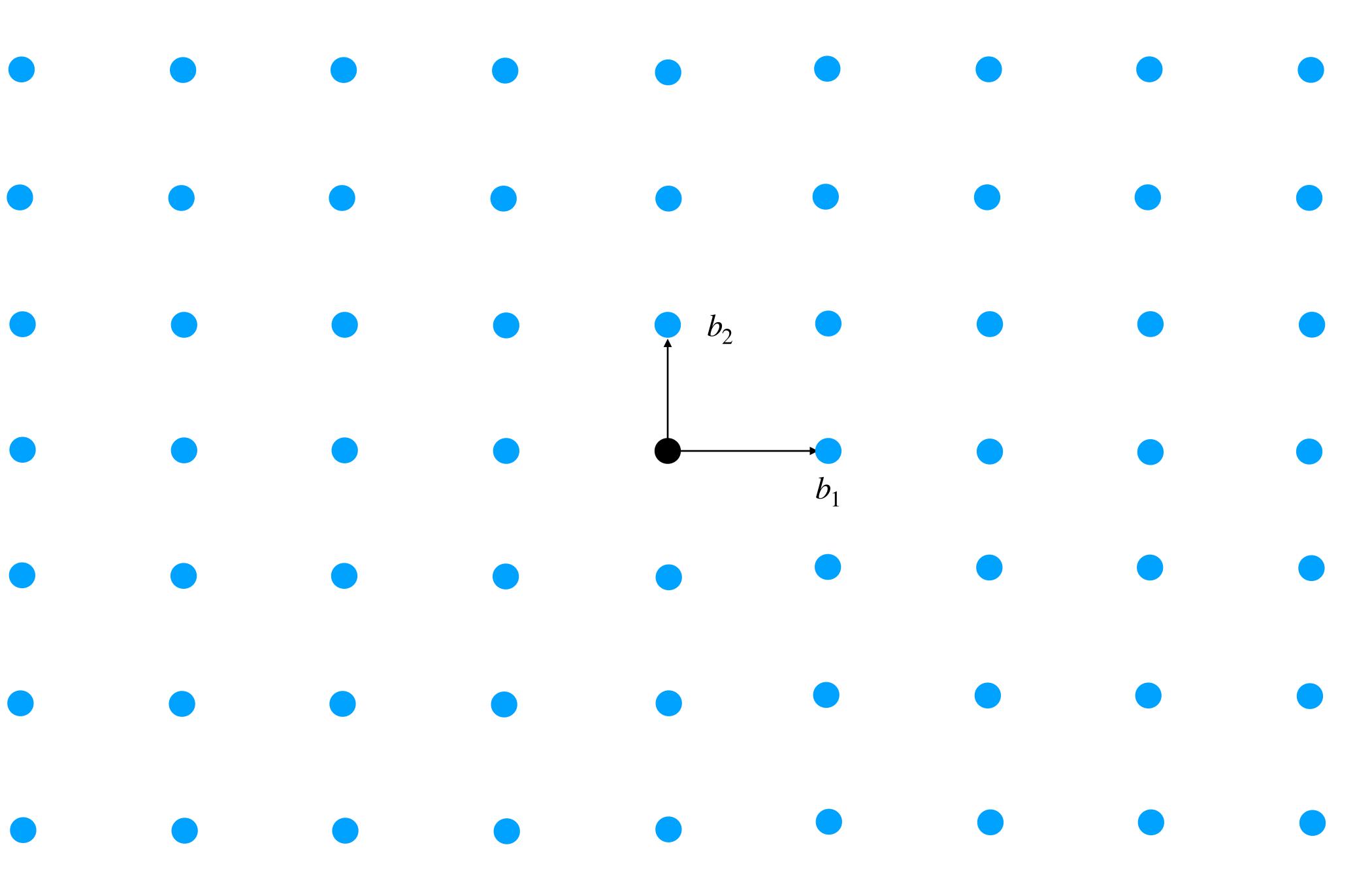


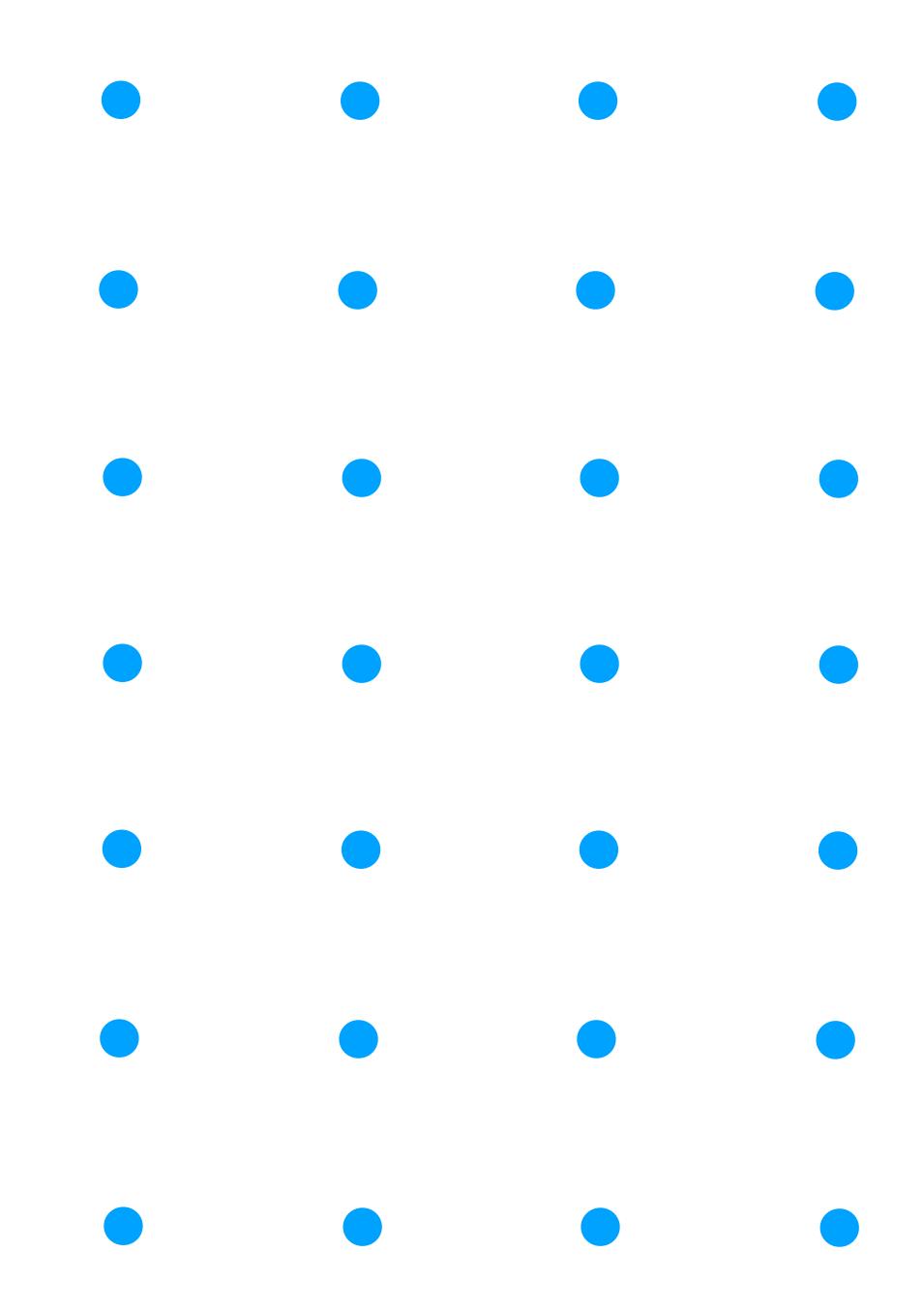


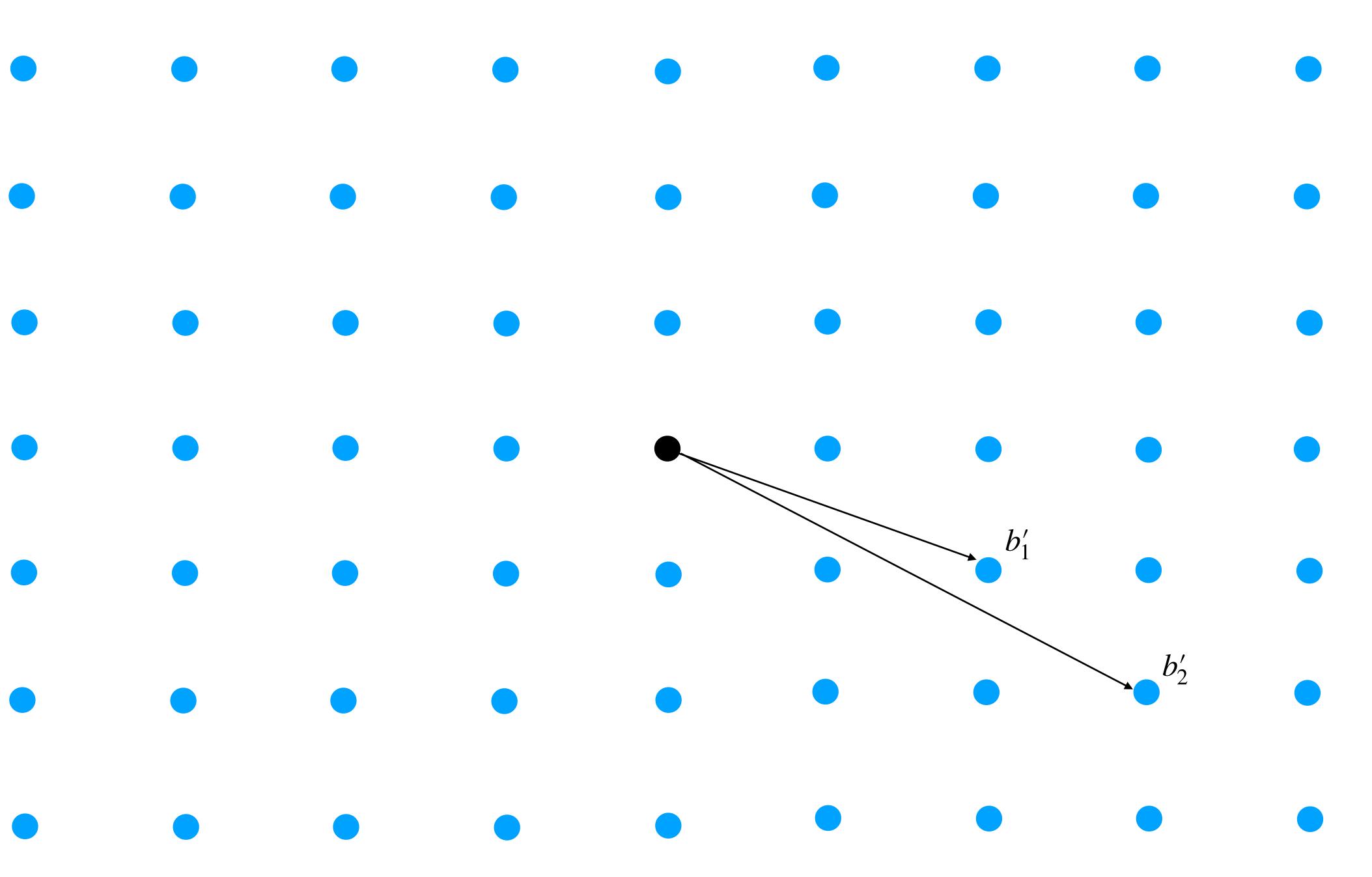












B and B' are bases of a lattice unimodular matrix.

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

 $B' = BU, B = B'V \implies B' = B'VU \implies I = VU.$

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

 $B' = BU, B = B'V \implies B' = B'VU \implies I = VU.$

Therefore, a lattice can have infinitely many bases!

• Factoring rational polynomials.

- Factoring rational polynomials.
- Integer linear programming.

- Factoring rational polynomials.
- Integer linear programming.
- Cryptanalysis of RSA, knapsack cryptosystems.

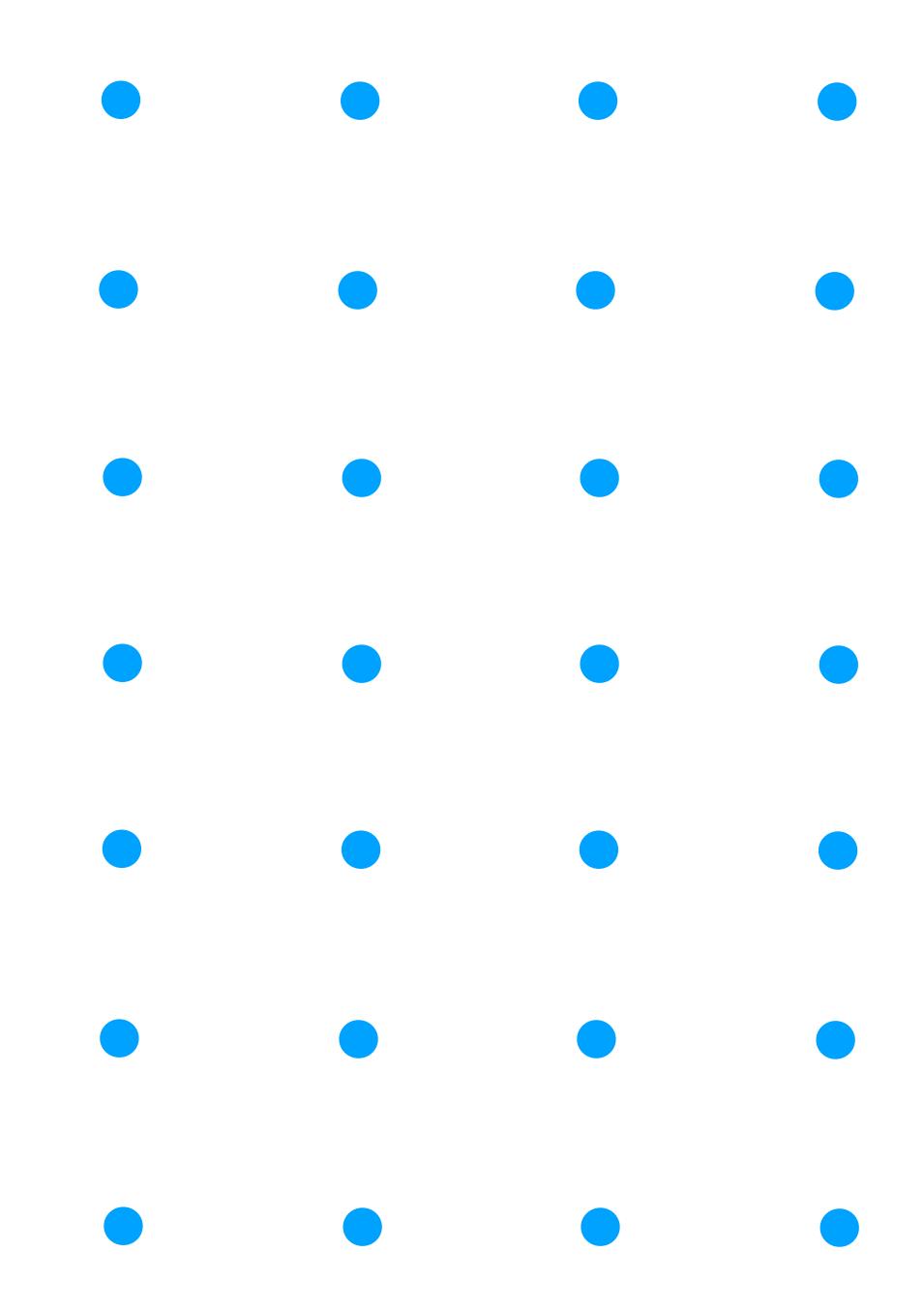
- Factoring rational polynomials.
- Integer linear programming.
- Cryptanalysis of RSA, knapsack cryptosystems.
- Building very strong cryptographic primitives (post-quantum).

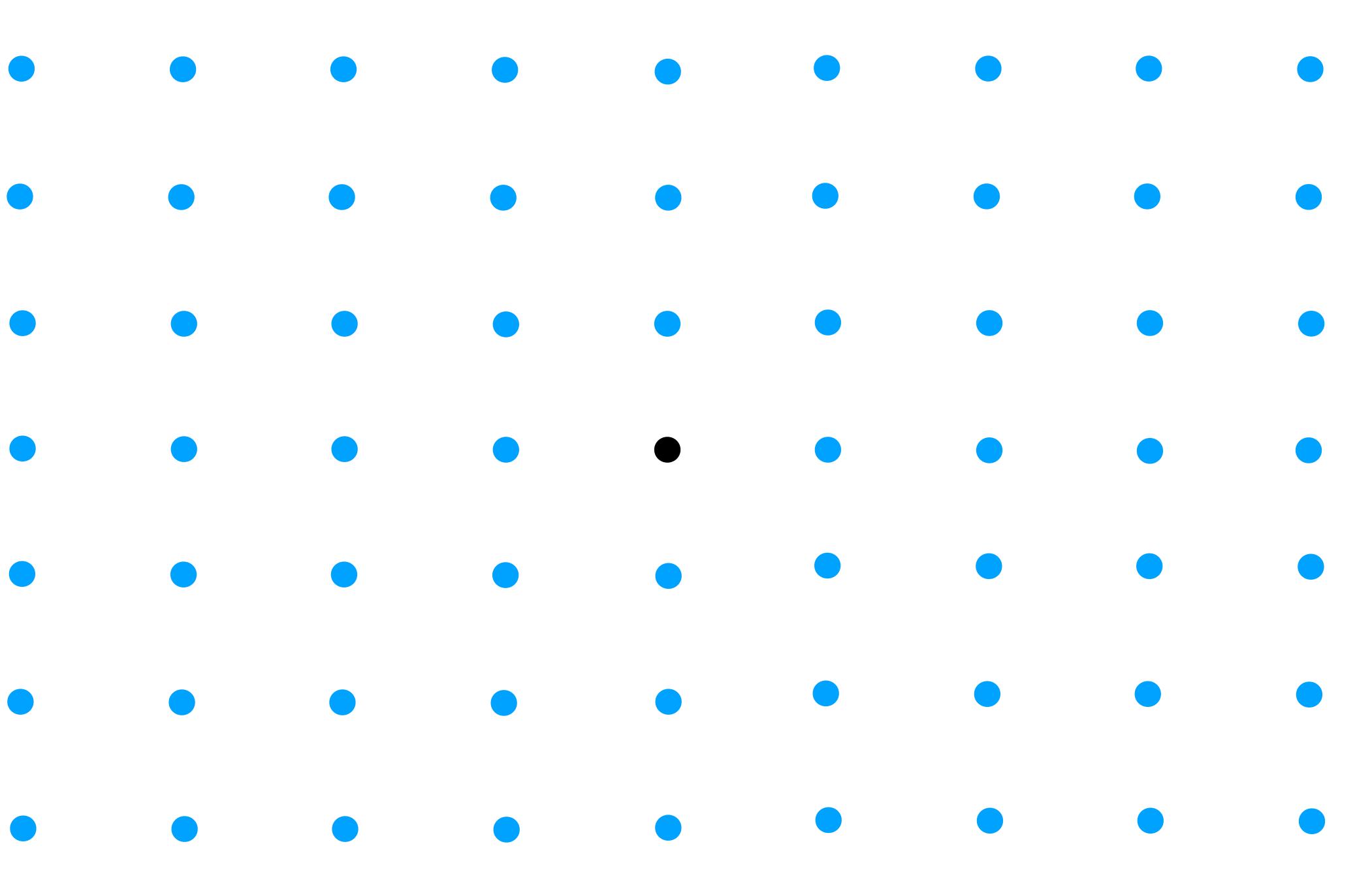
Closest Vector Problem (CVP)

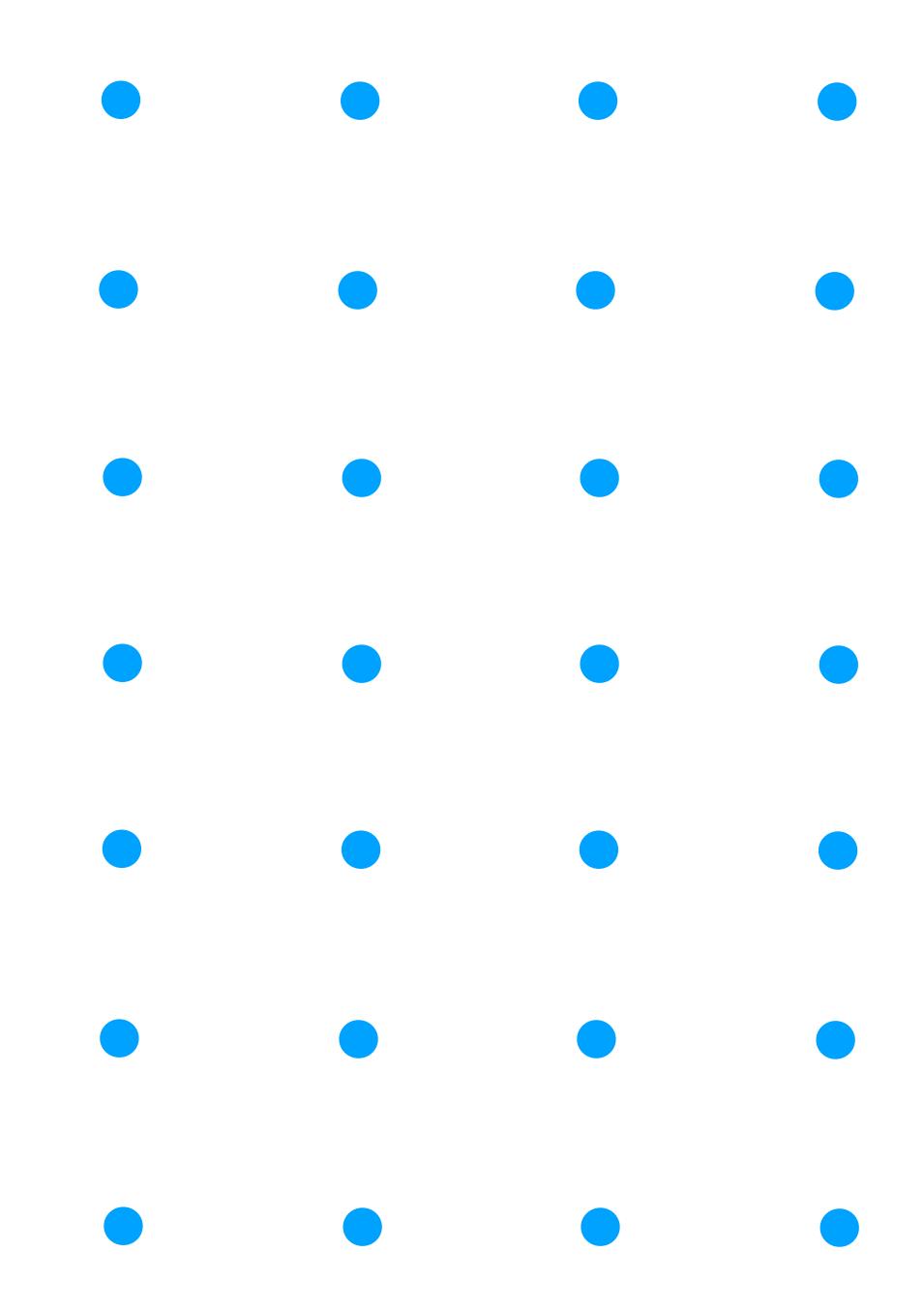
Closest Vector Problem (CVP)

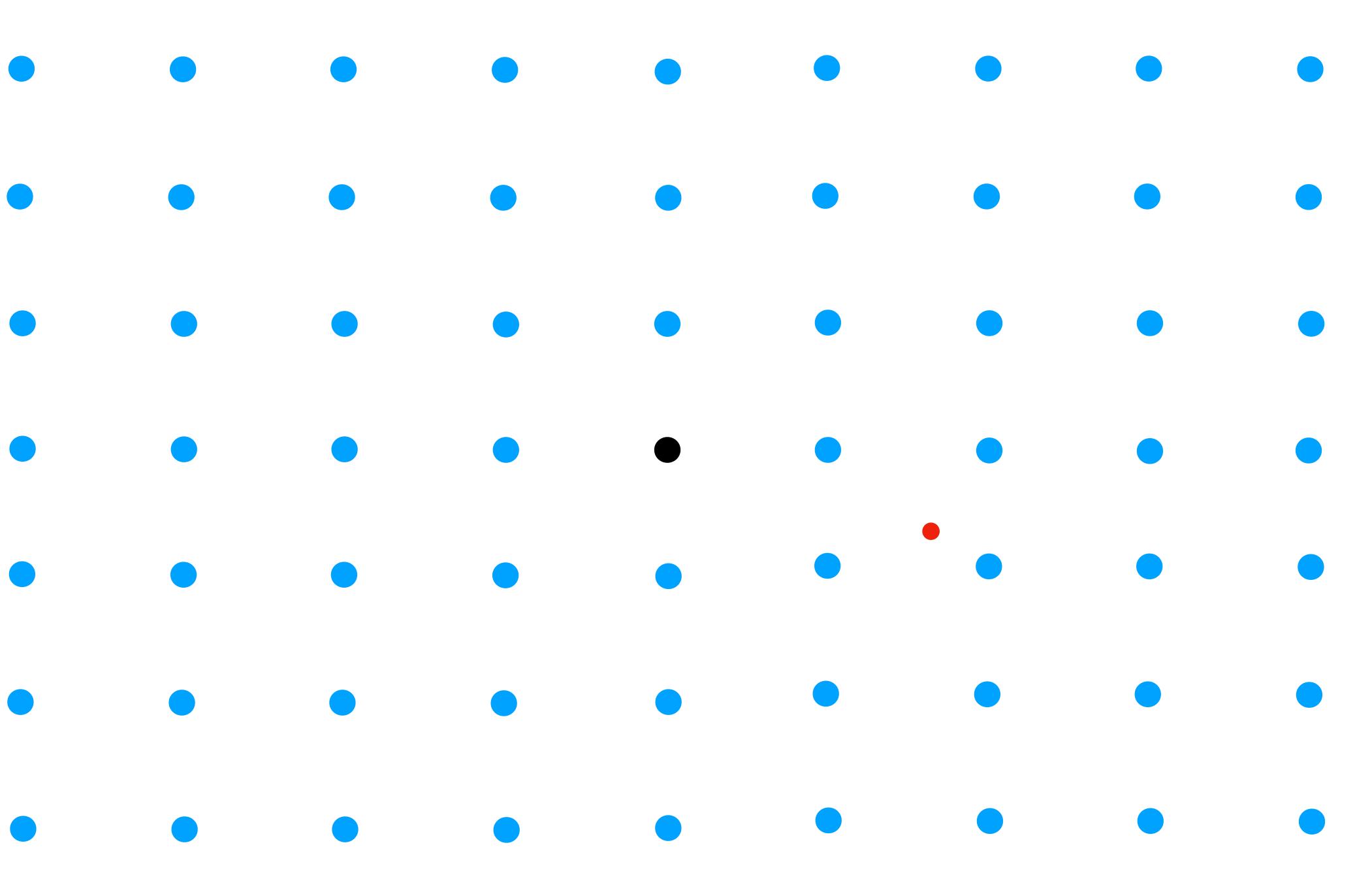
Given a basis $B = \{b_1, \dots, b_n\}$ and a target $t \in \mathbb{R}^{n+1}$, find a vector $v \in \mathscr{L}(B)$ such that v is closest to t, i.e.,

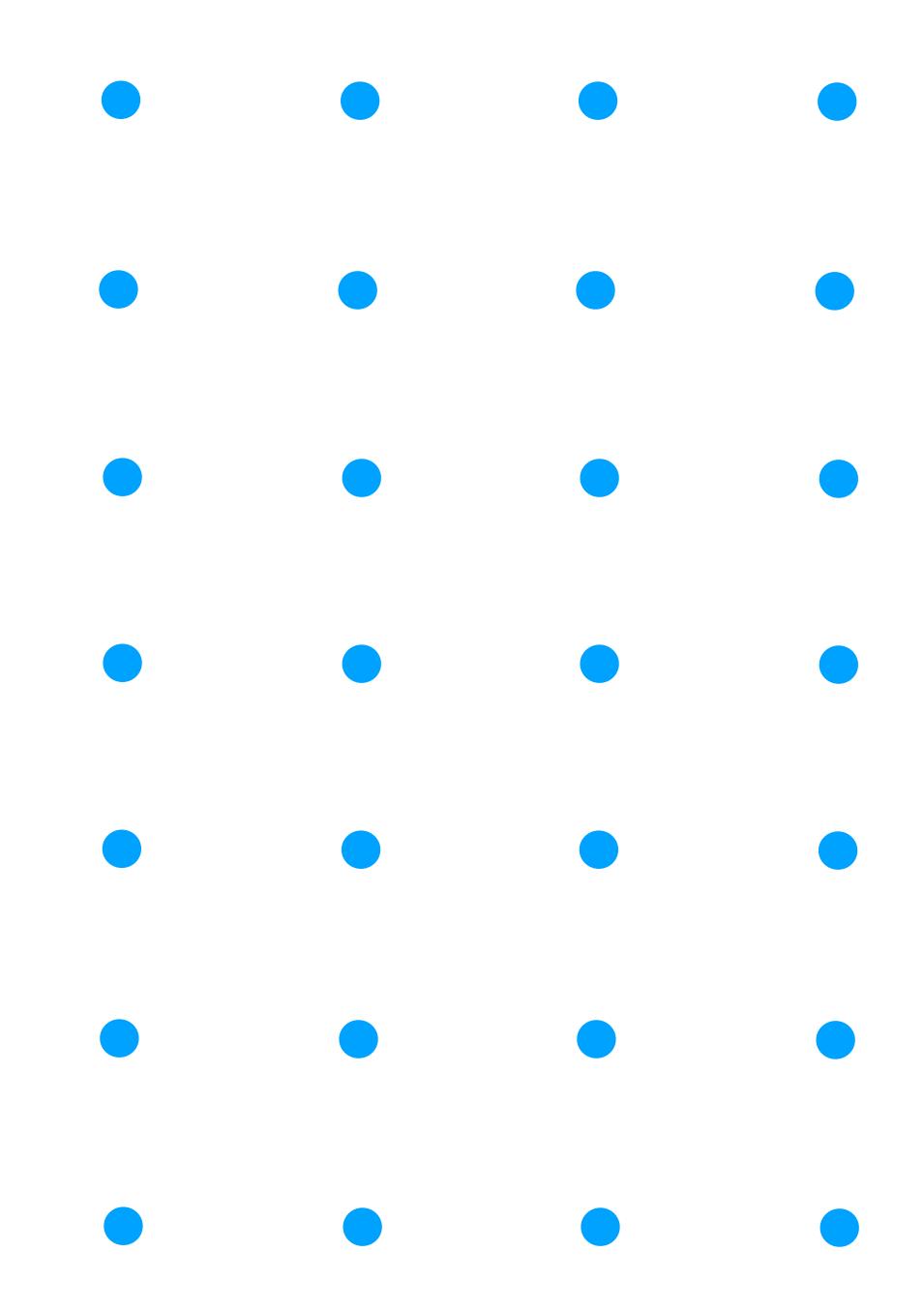
- $||v-t|| \leq ||u-t||, \forall u \in \mathscr{L}(B)$

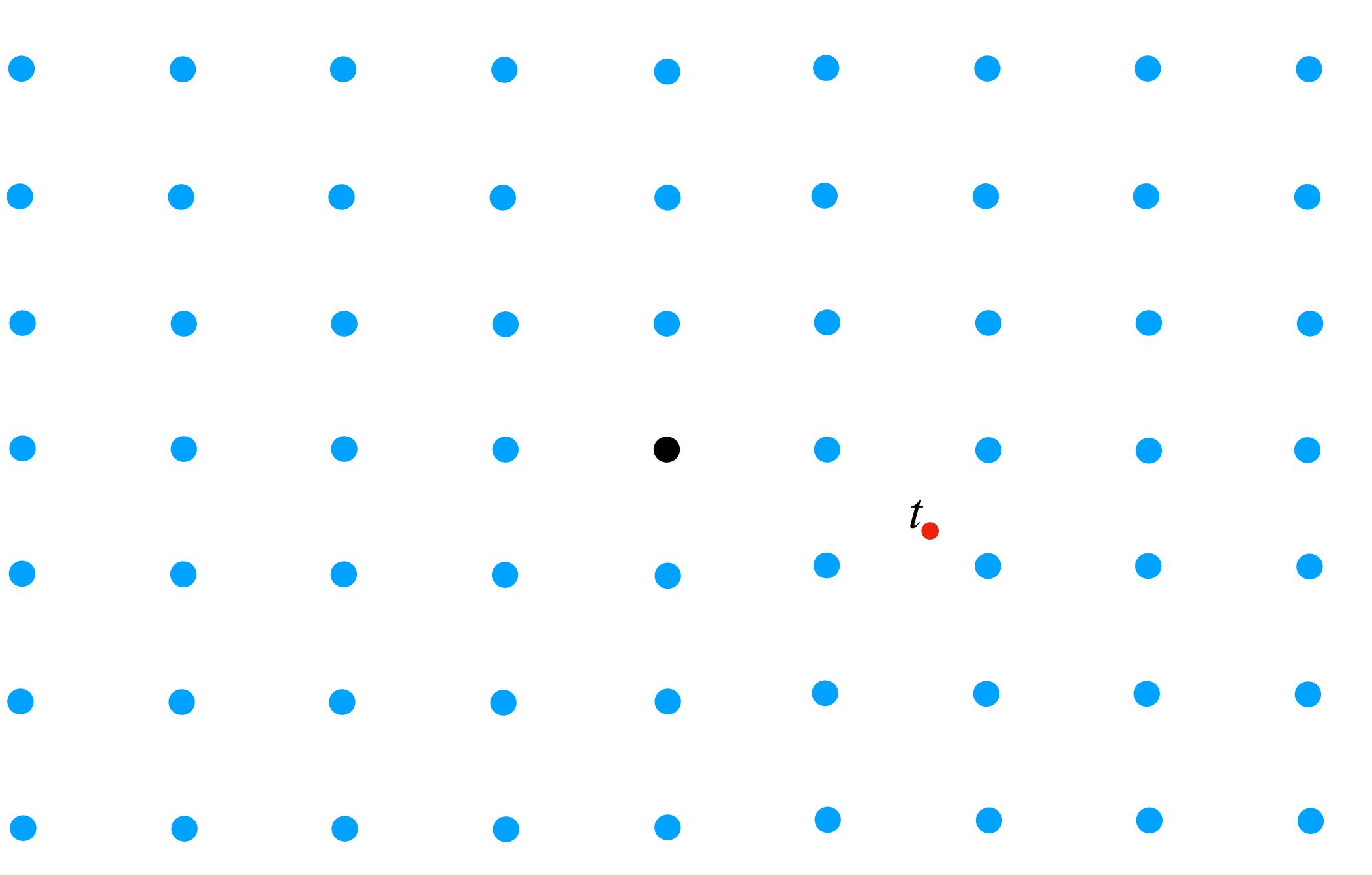


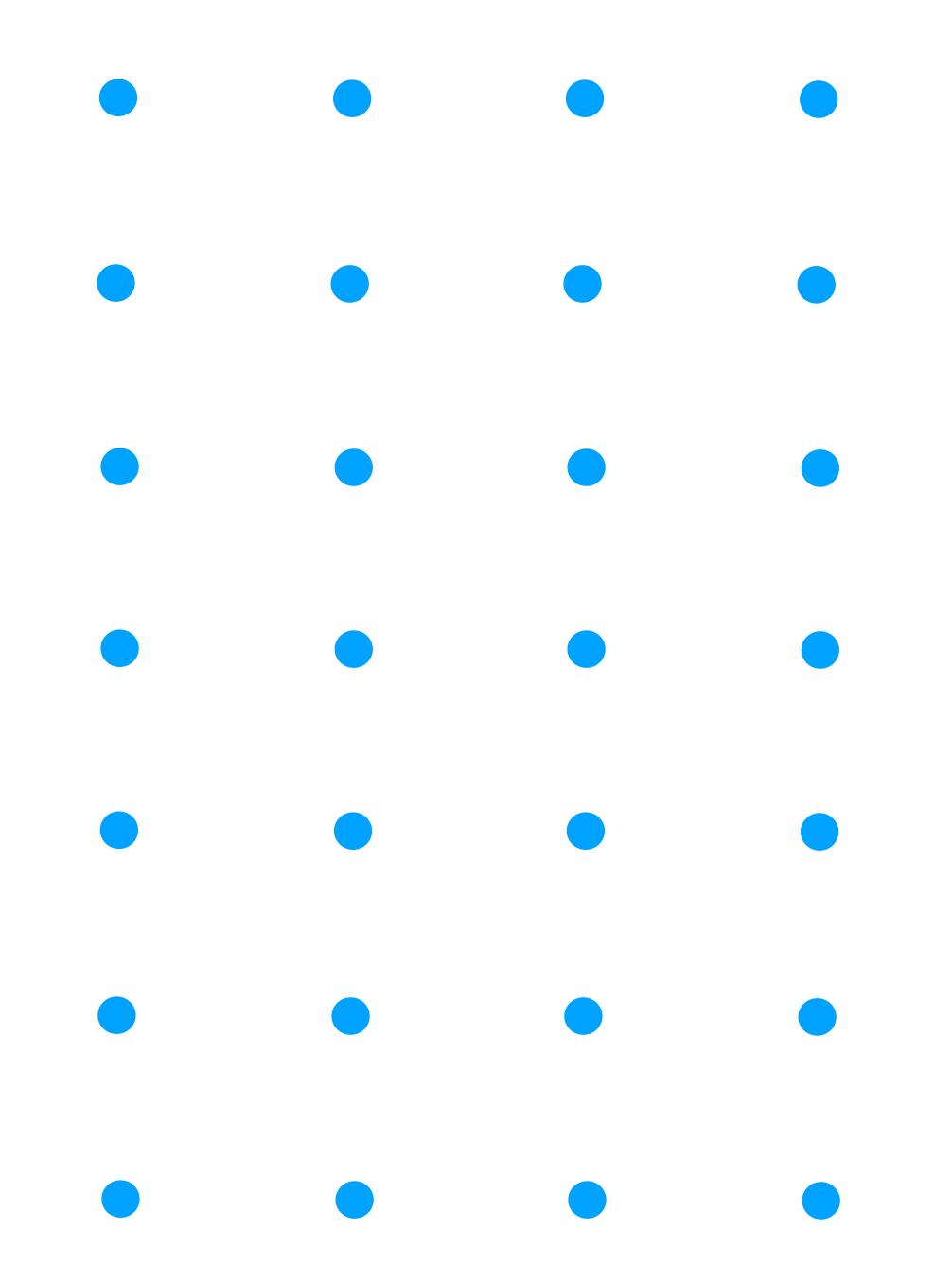


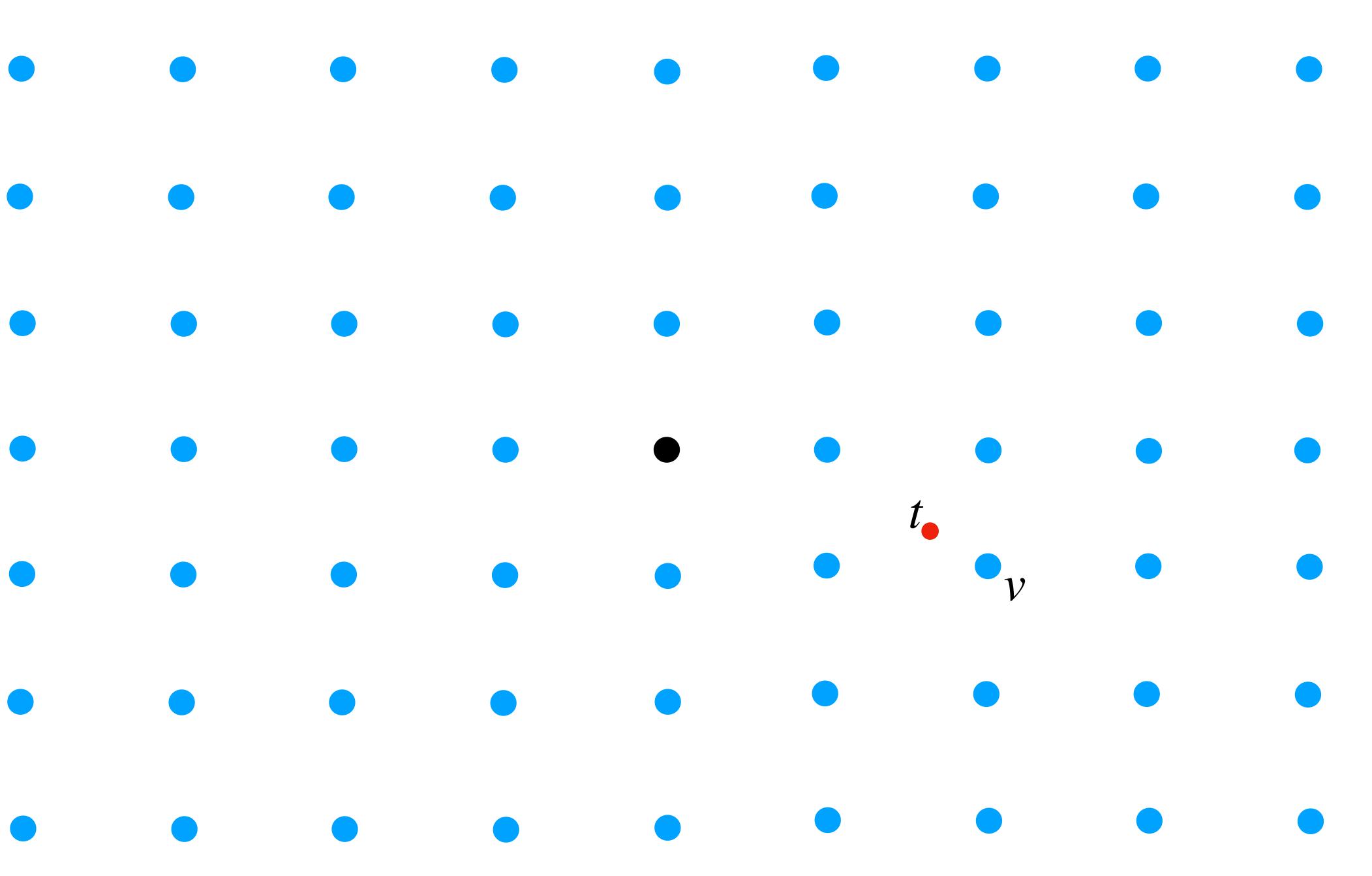


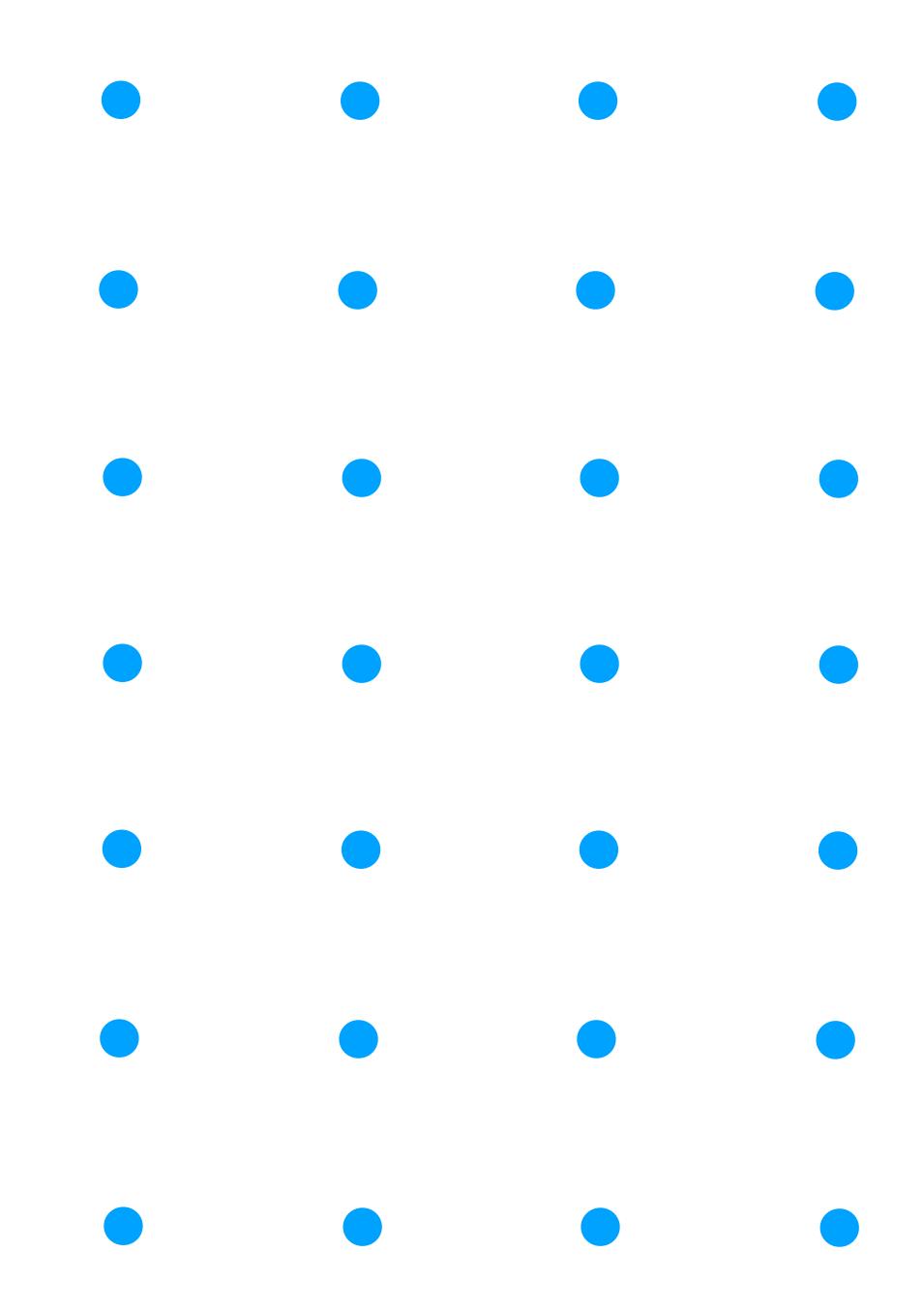


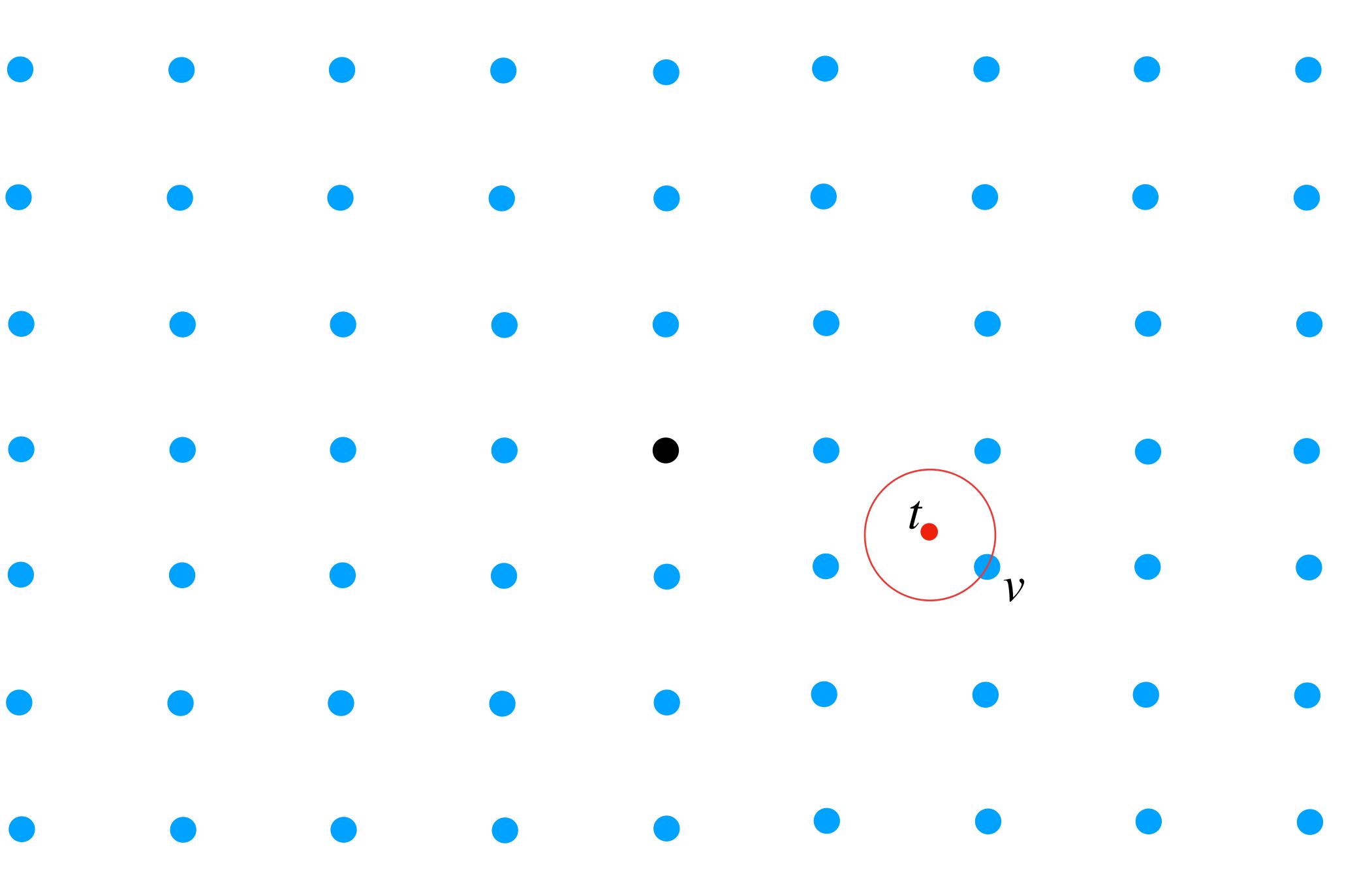


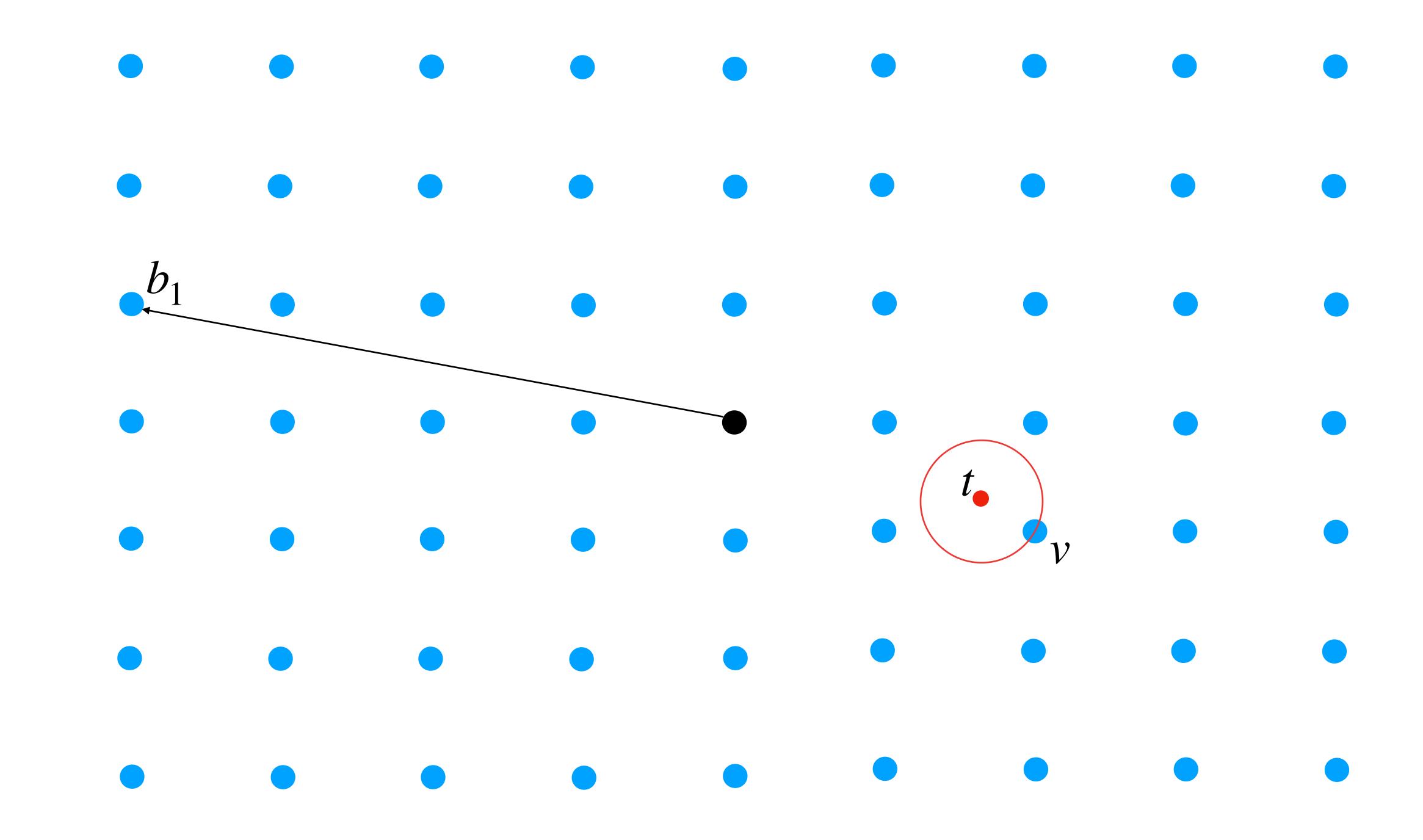


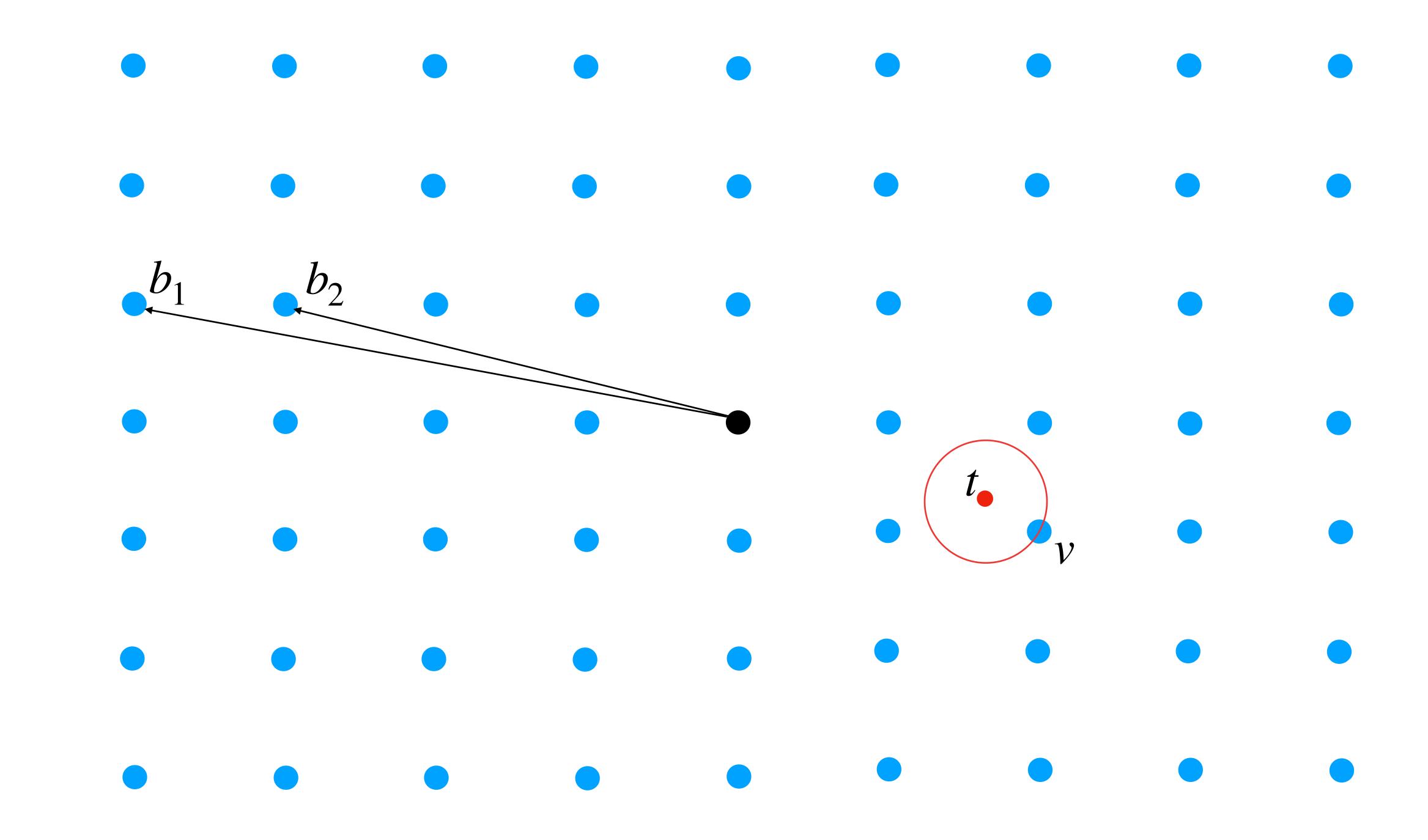












Facts about CVP

Facts about CVP

• CVP is NP-Complete under all norms.

Facts about CVP

- CVP is NP-Complete under all norms.

• Al-most all other lattice problems reduces to CVP in polynomial time.

Facts about CVP

- CVP is NP-Complete under all norms.
- Al-most all other lattice problems reduces to CVP in polynomial time.

Algorithm

Enumeration

Sieving

Voronoi

Gaussian

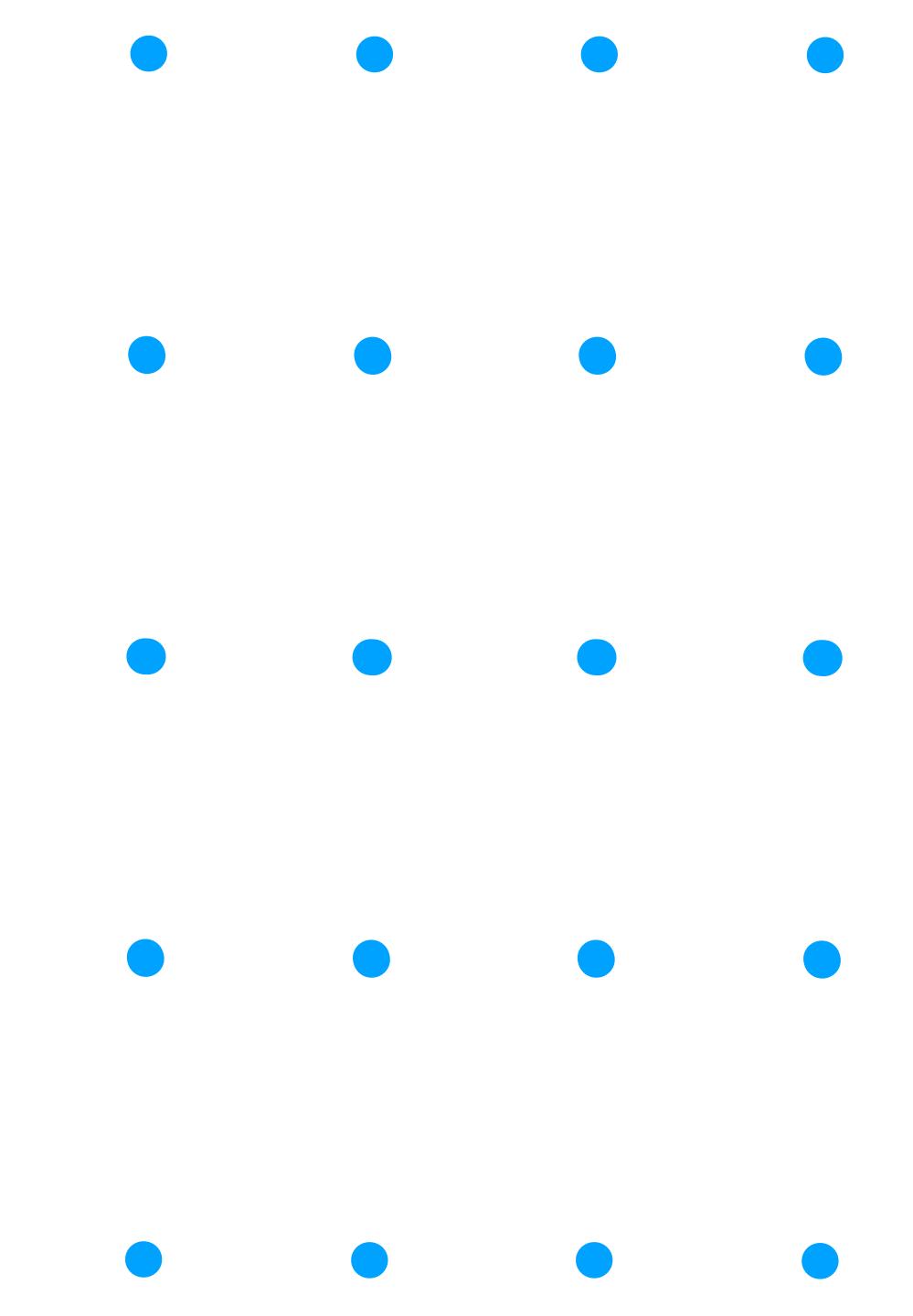
Time	Space
$n^{O(n)}$	poly(n)
$2^{O(n)}$	$2^{O(n)}$
$\tilde{O}(2^{2n})$	$\tilde{O}(2^n)$
$2^{n+o(n)}$	$2^{n+o(n)}$

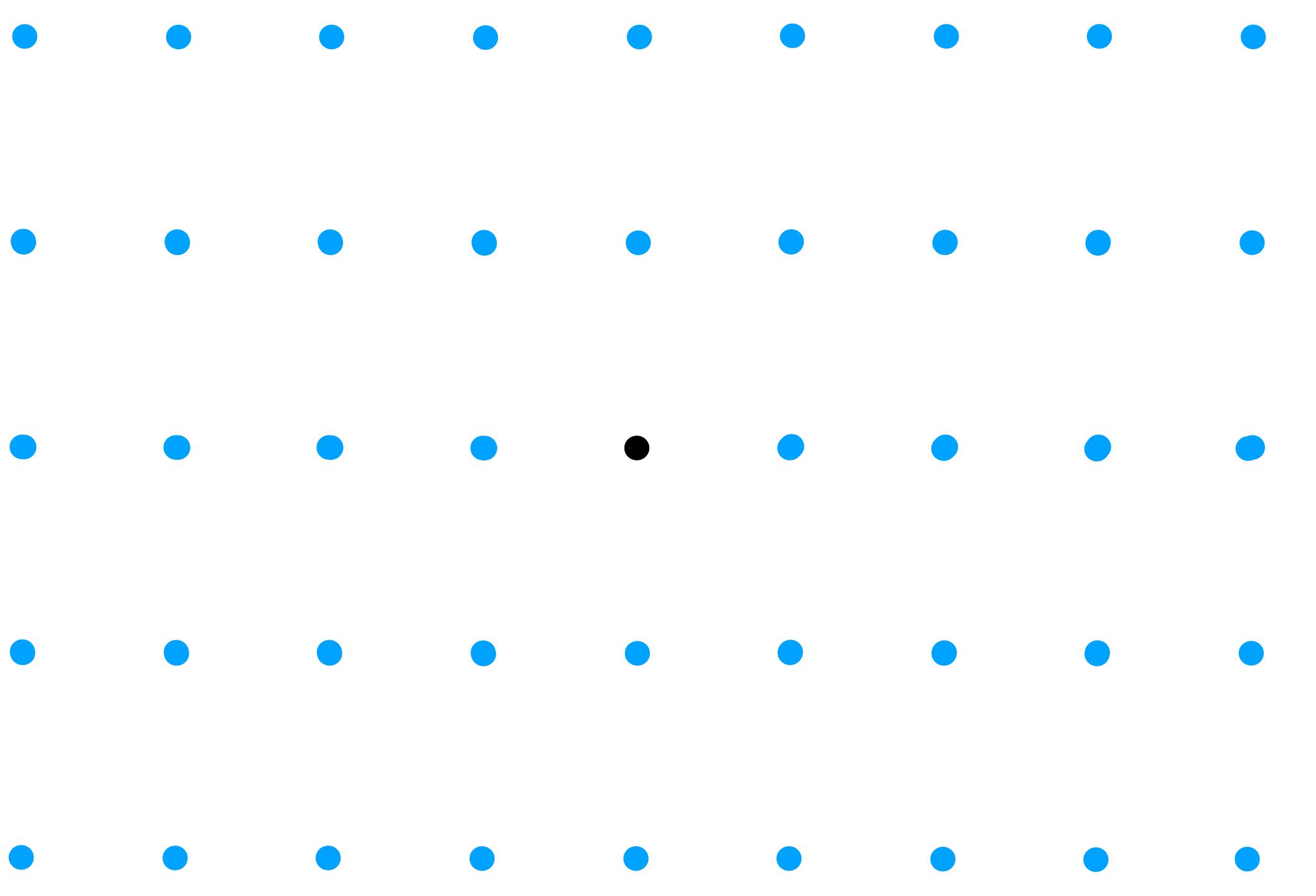
Maximum Distance Sublattice Problem (MDSP)

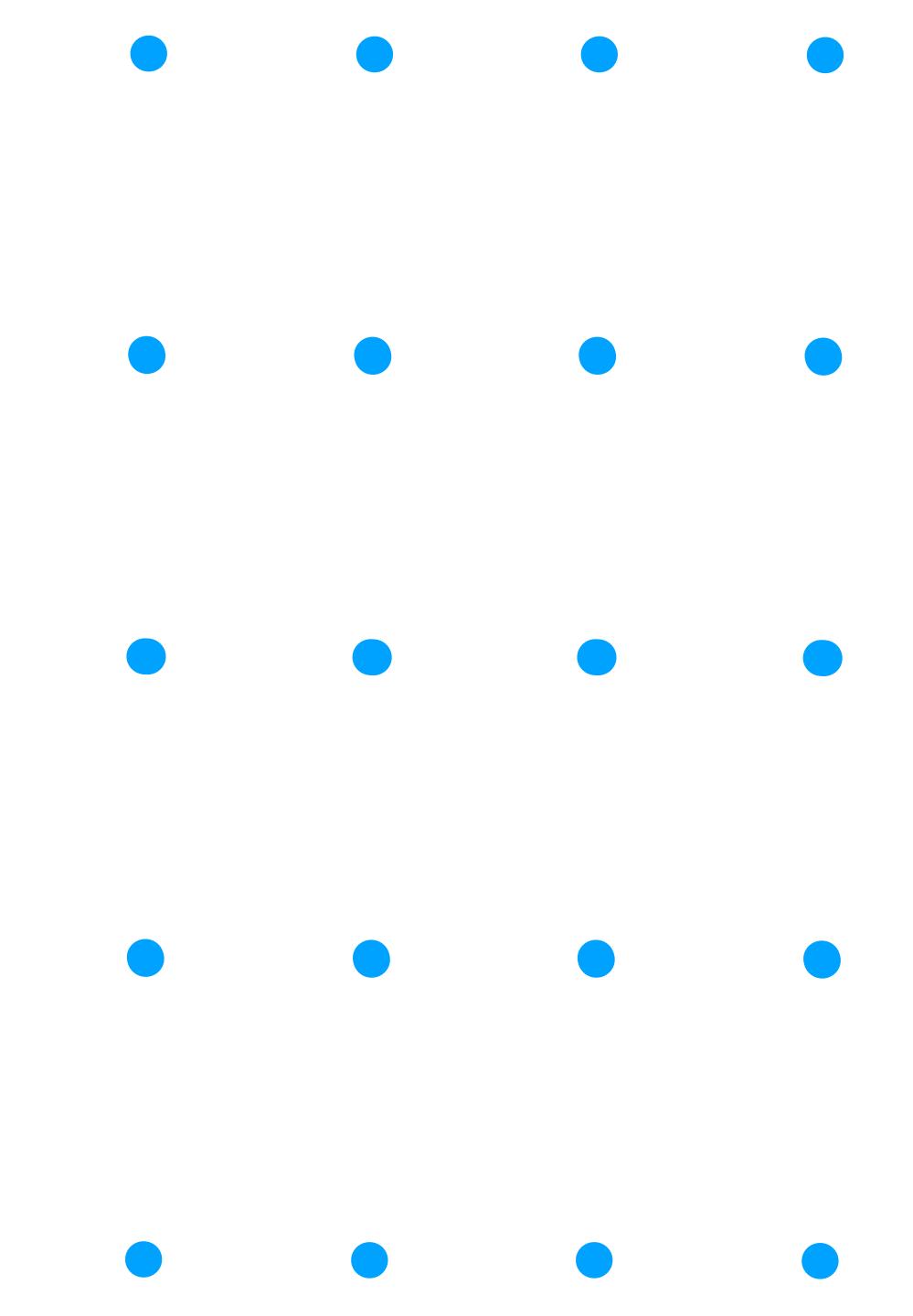
Maximum Distance Sublattice Problem (MDSP)

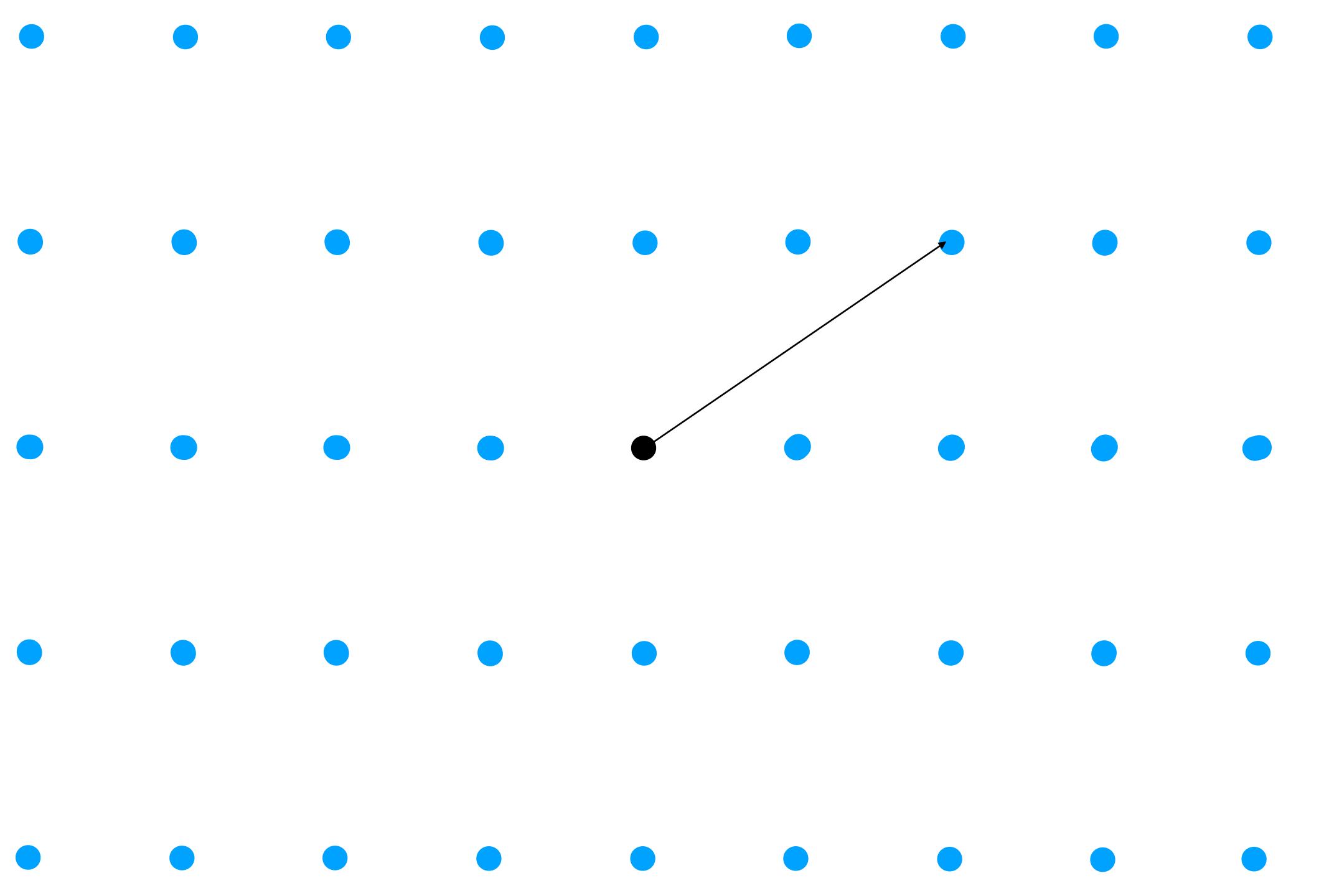
- and the distance $dist(\vec{v}, span(B'))$ is maximum.
- Here, we call \overrightarrow{v} the fixed vector.

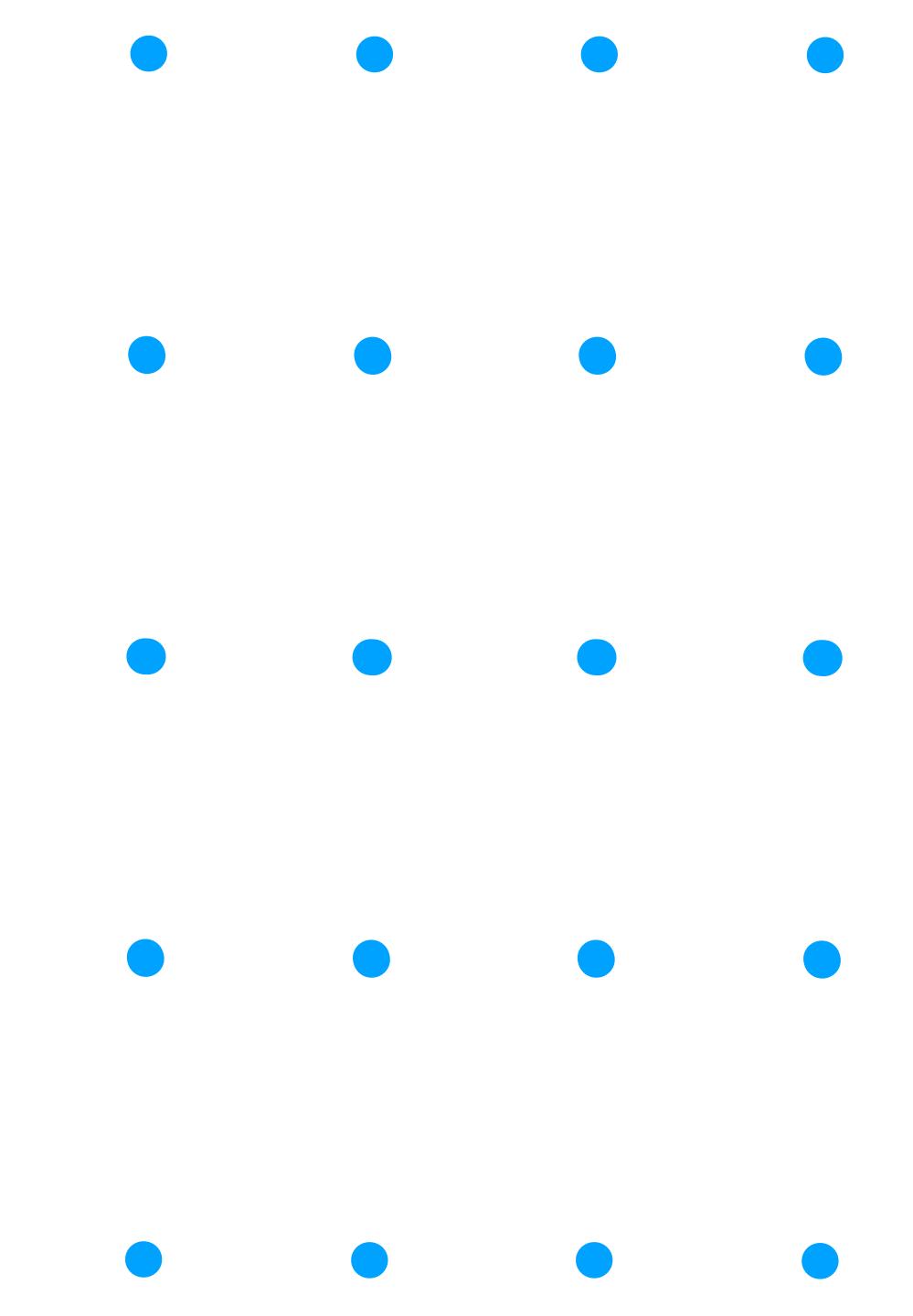
• Given a basis $[\overrightarrow{v} | B] = \{\overrightarrow{v}, \overrightarrow{b_1}, \dots, \overrightarrow{b_n}\}$ for an n + 1 dimensional lattice \mathscr{L} , find $B' = \{\overrightarrow{b'_1}, \dots, \overrightarrow{b'_n}\}$ such that $\{\overrightarrow{v}, \overrightarrow{b'_1}, \dots, \overrightarrow{b'_n}\}$ is also a basis for \mathscr{L}

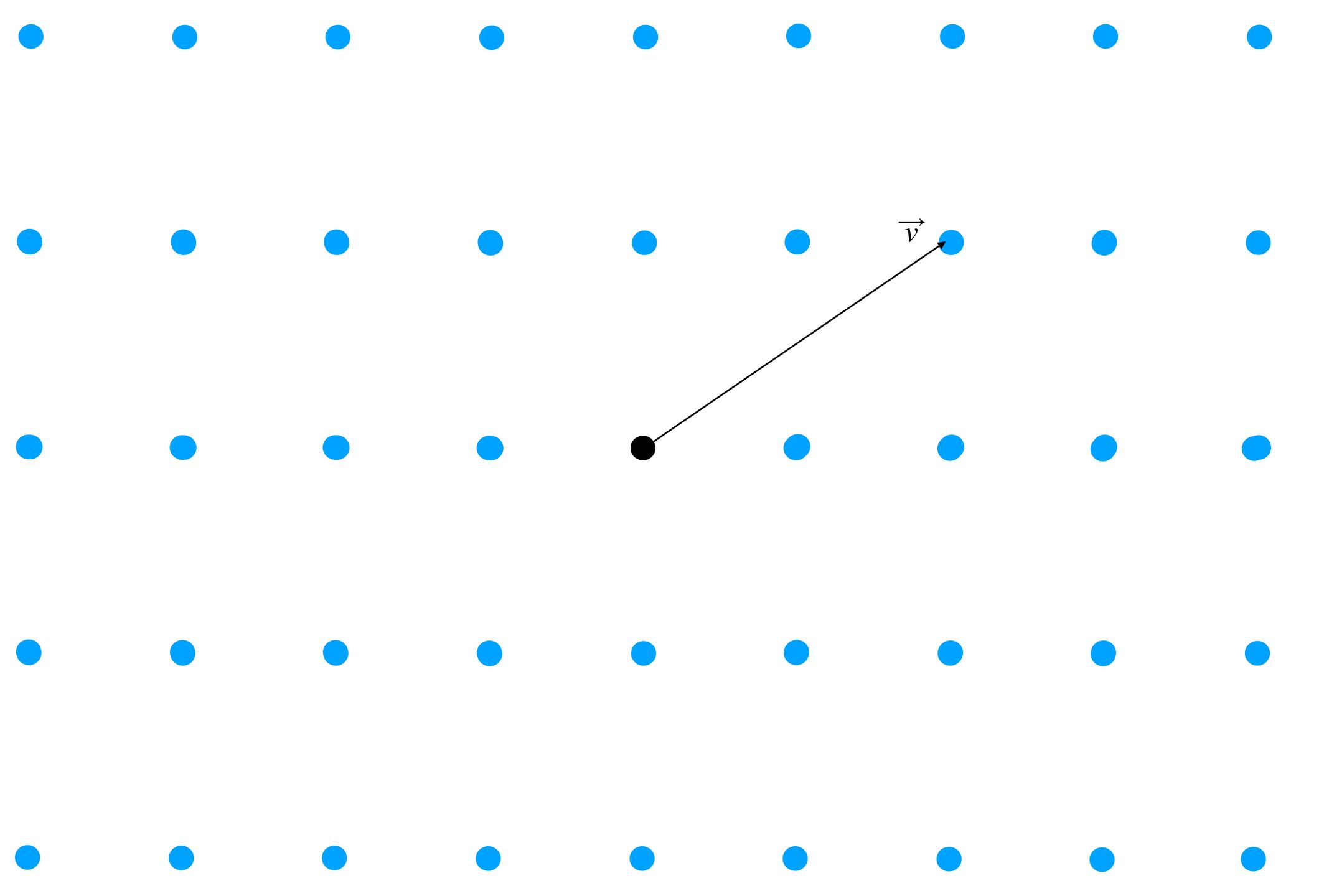


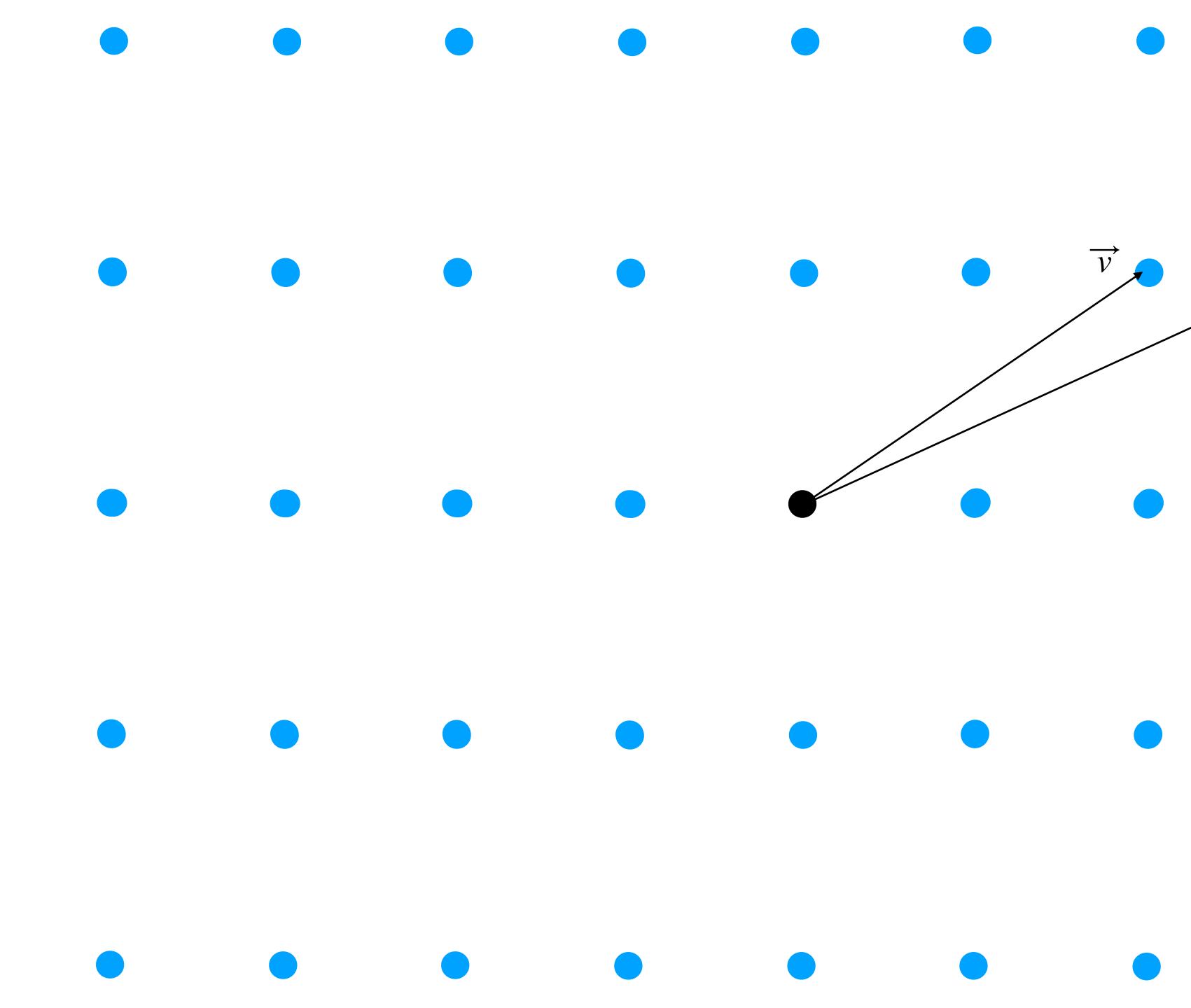


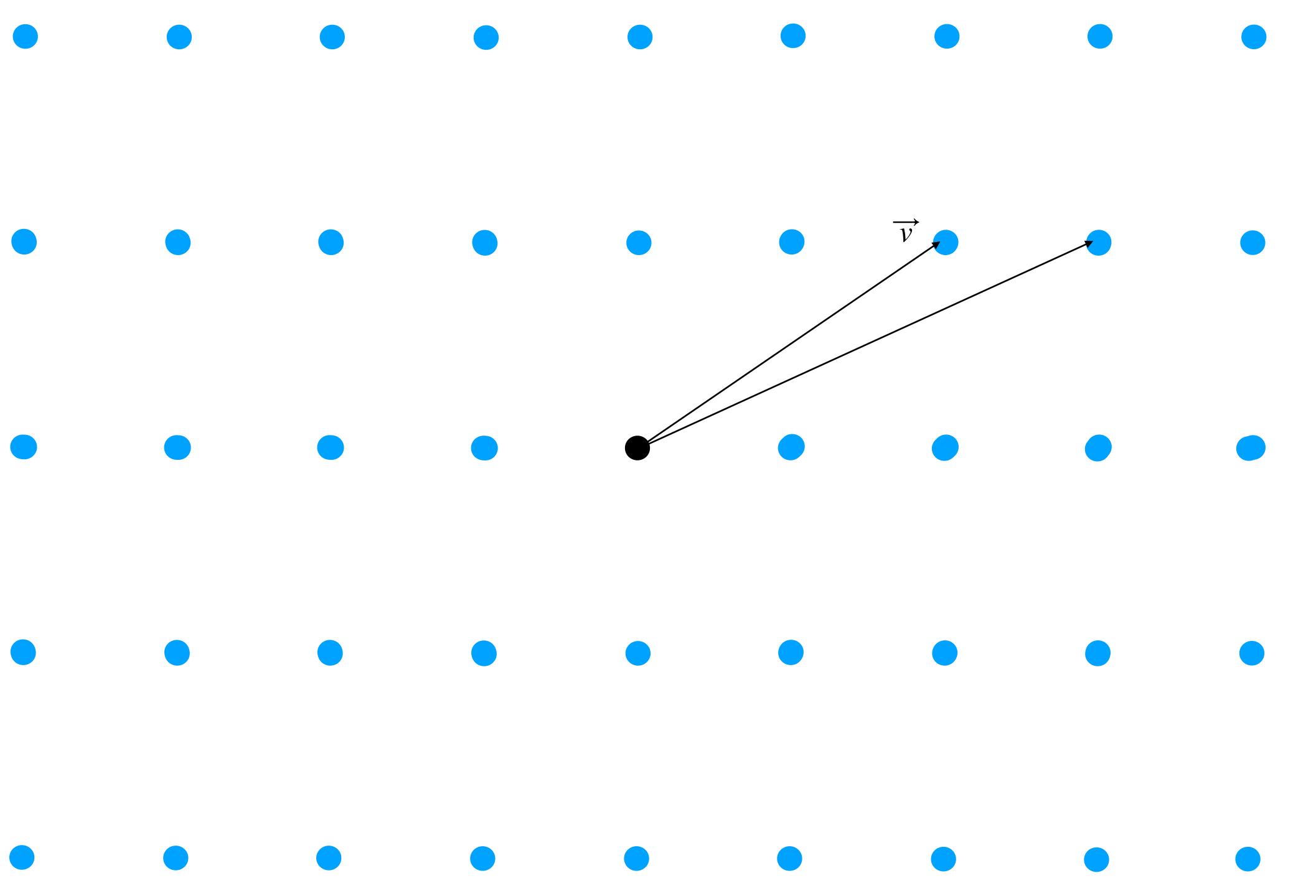


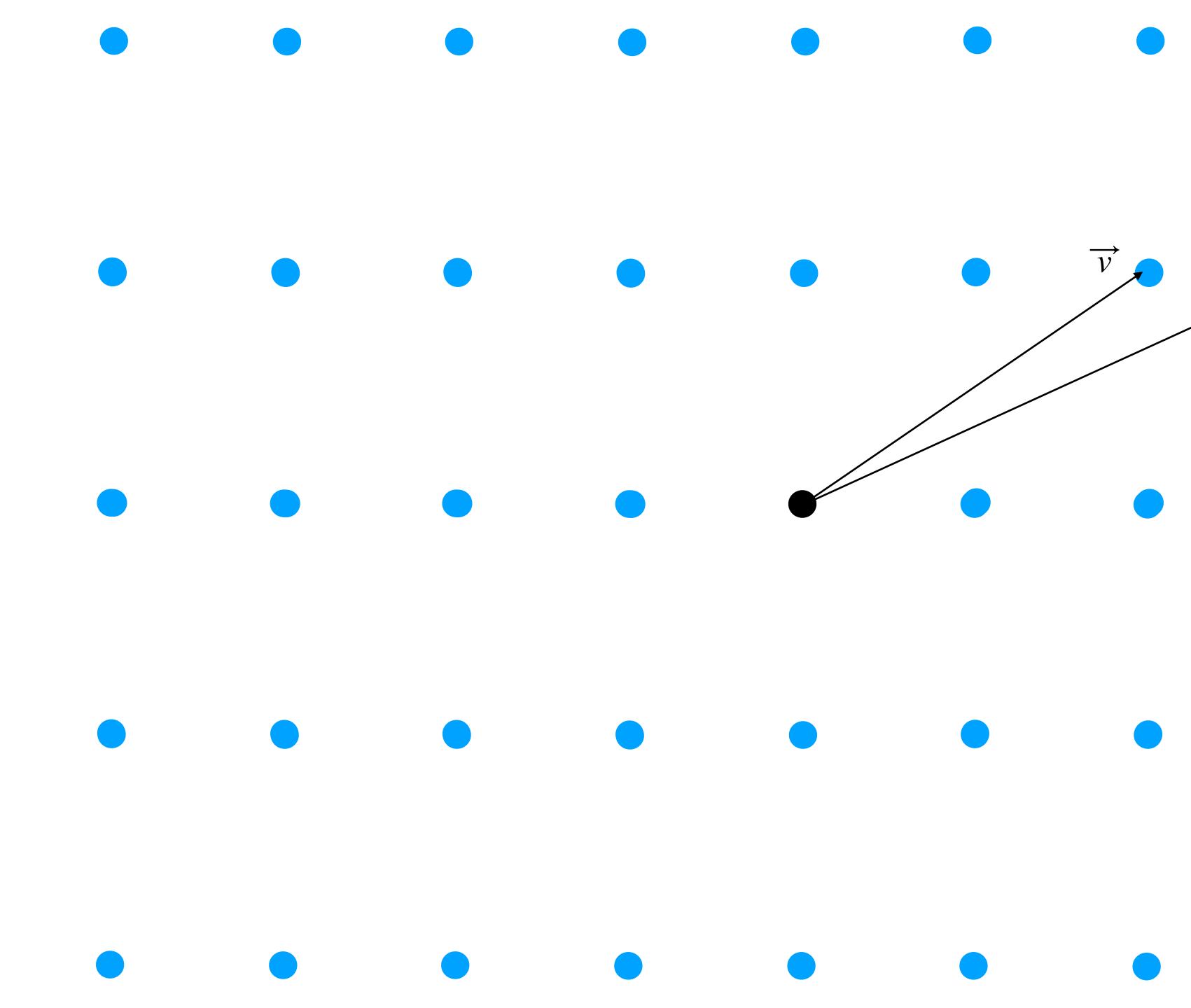


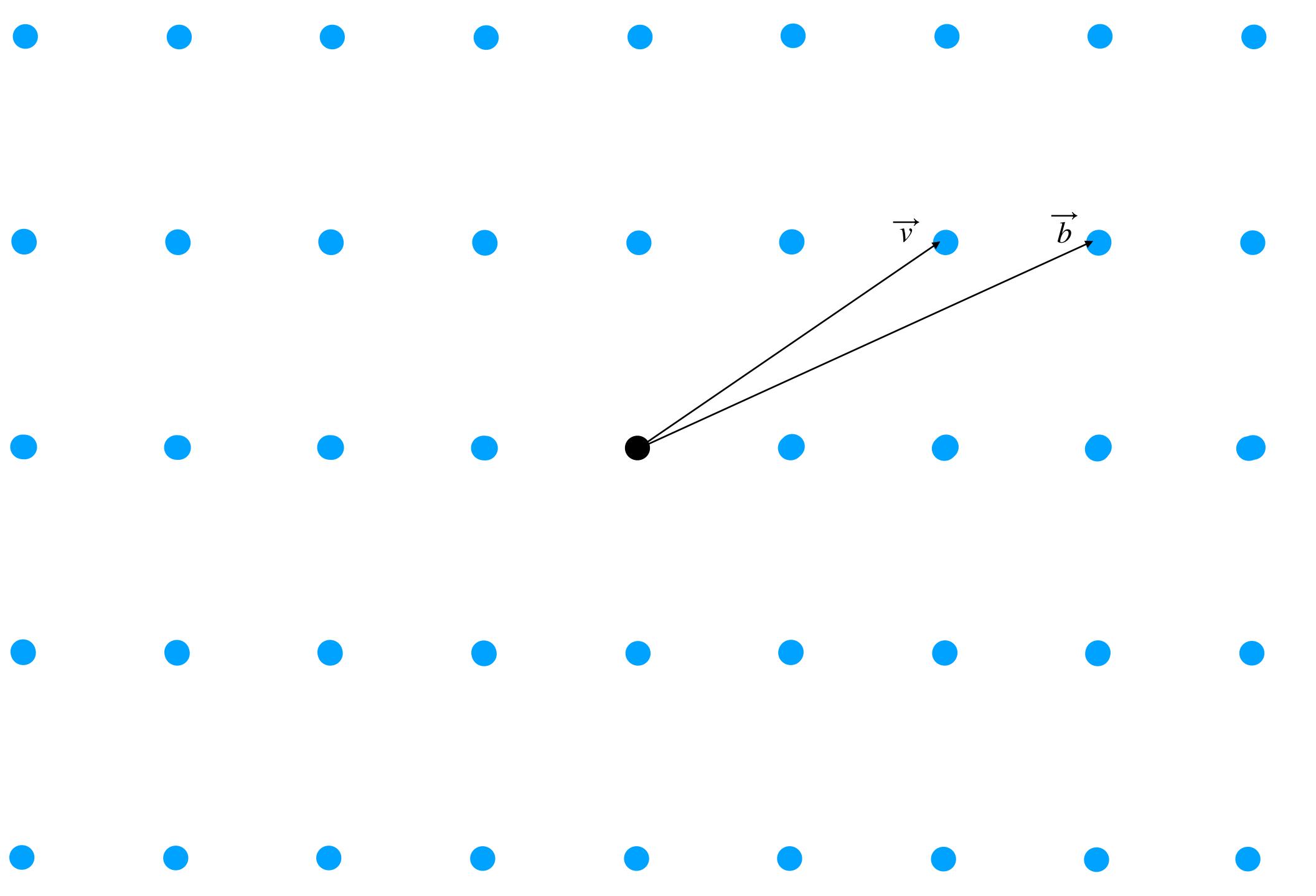


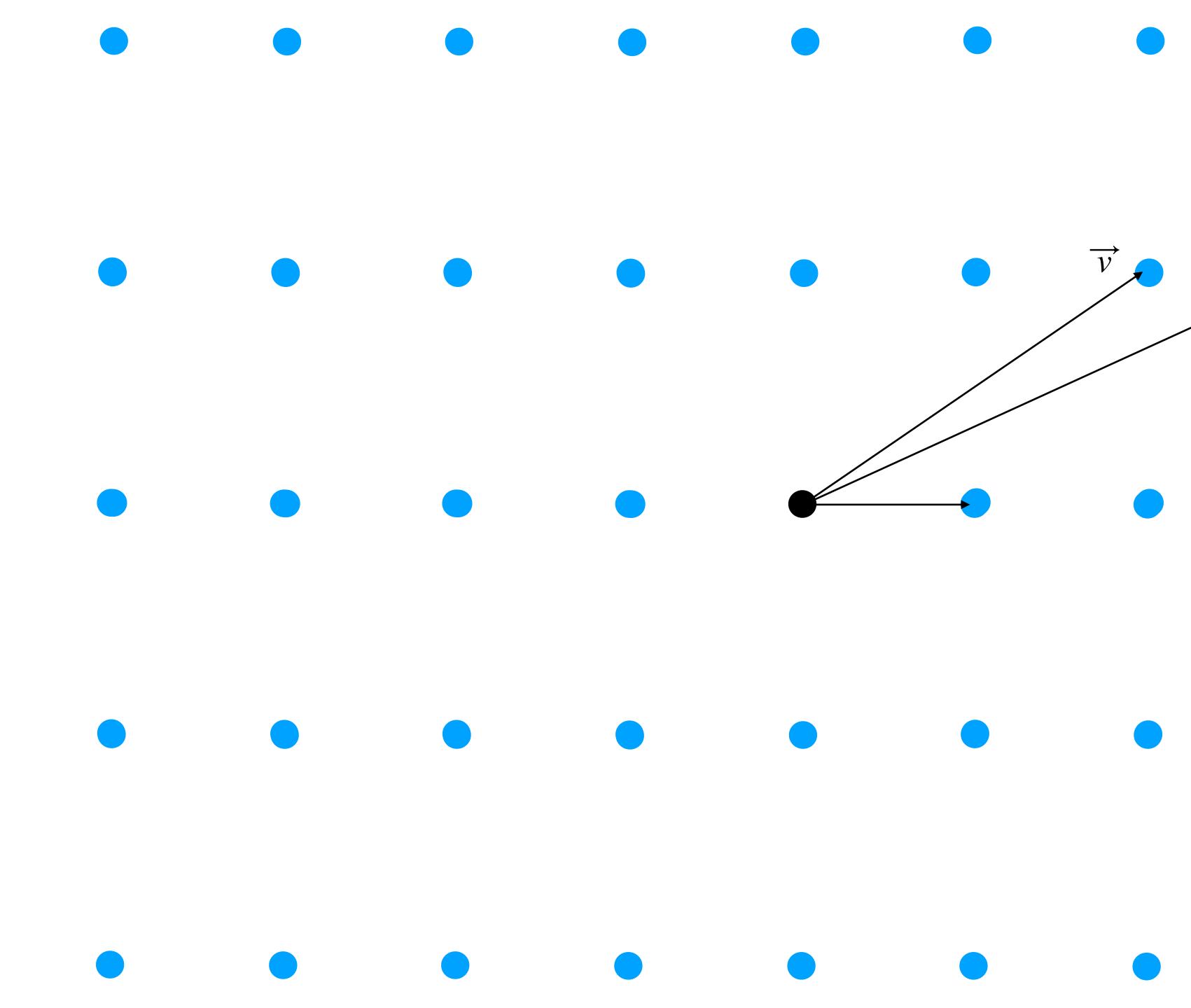


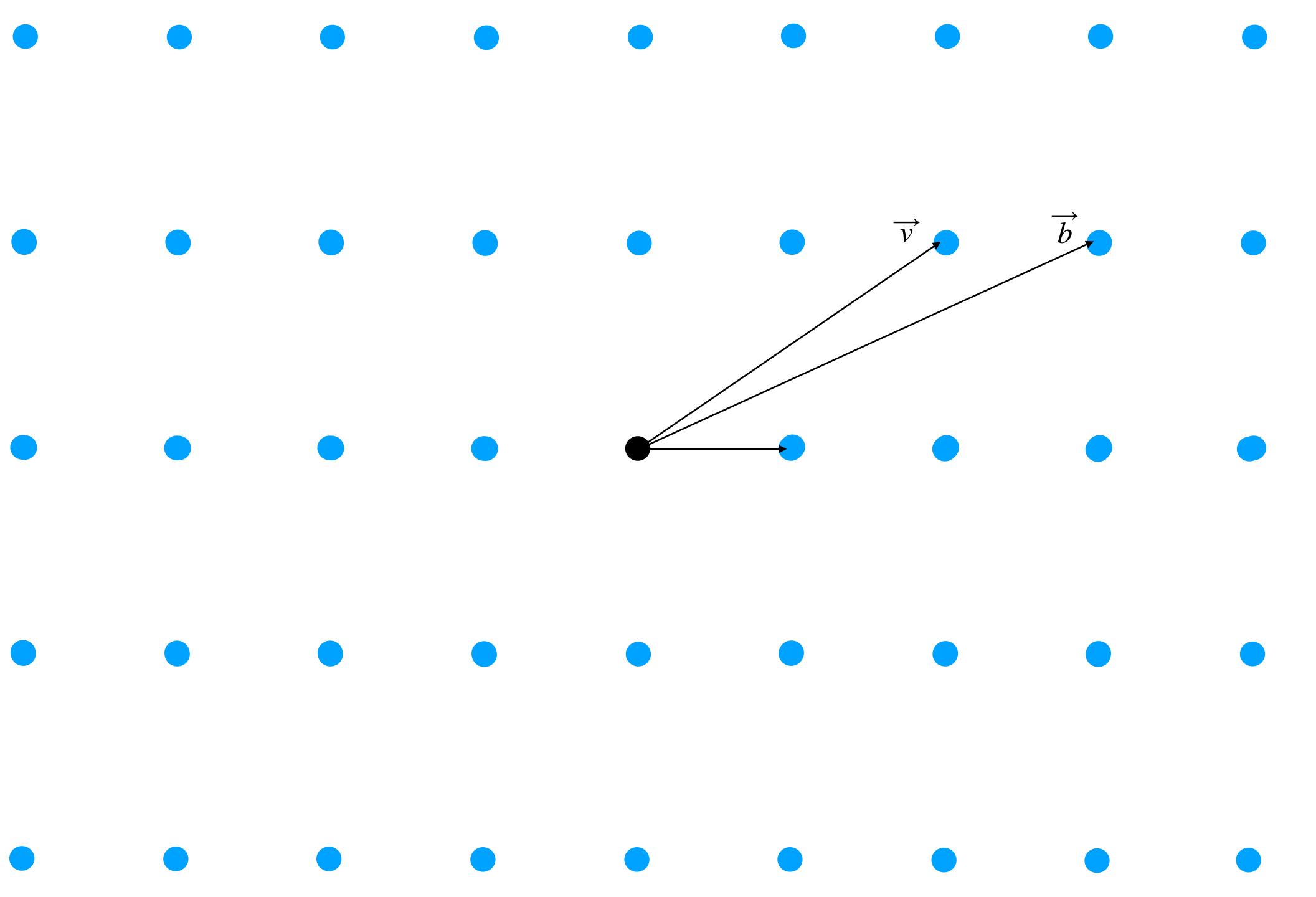


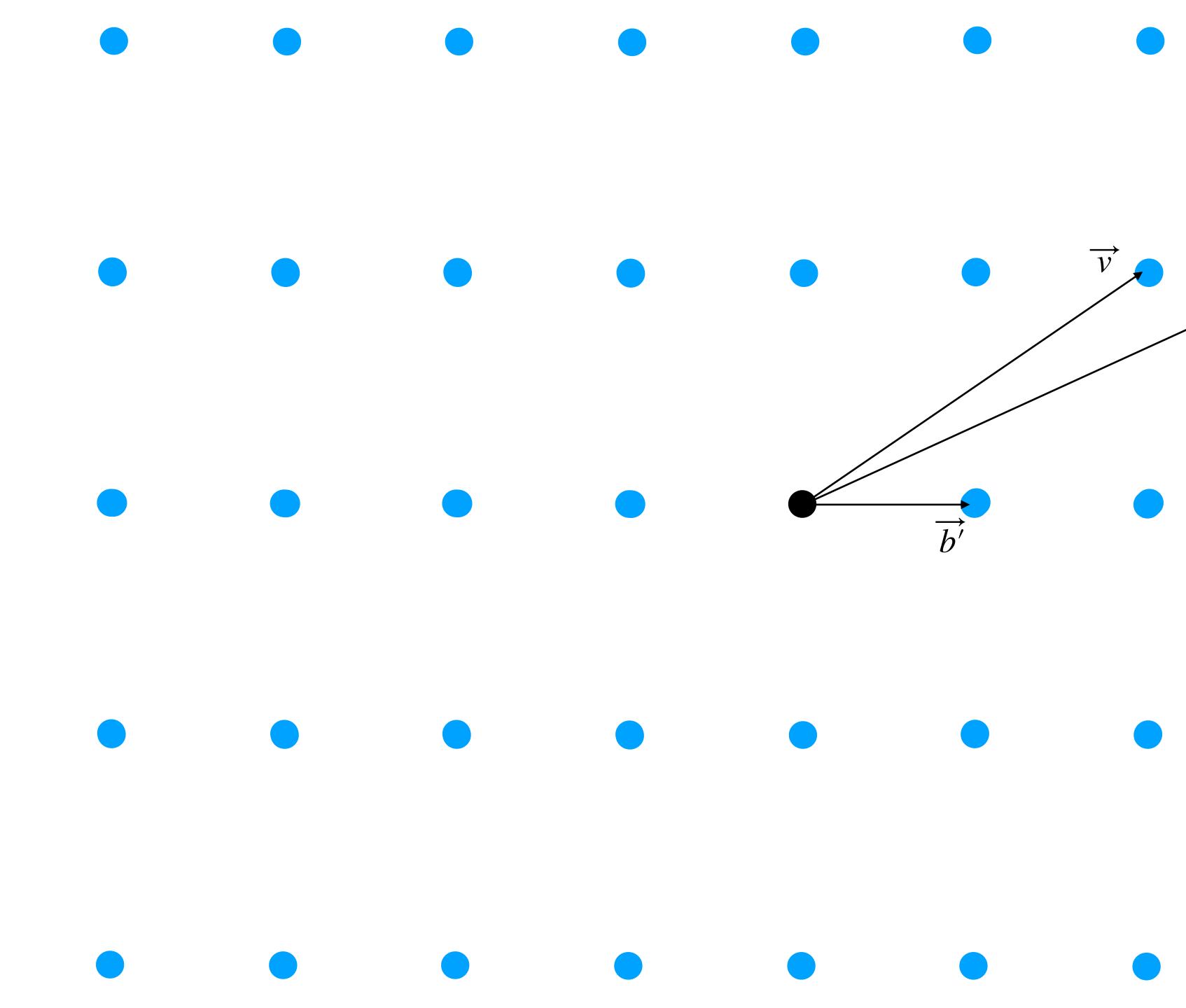


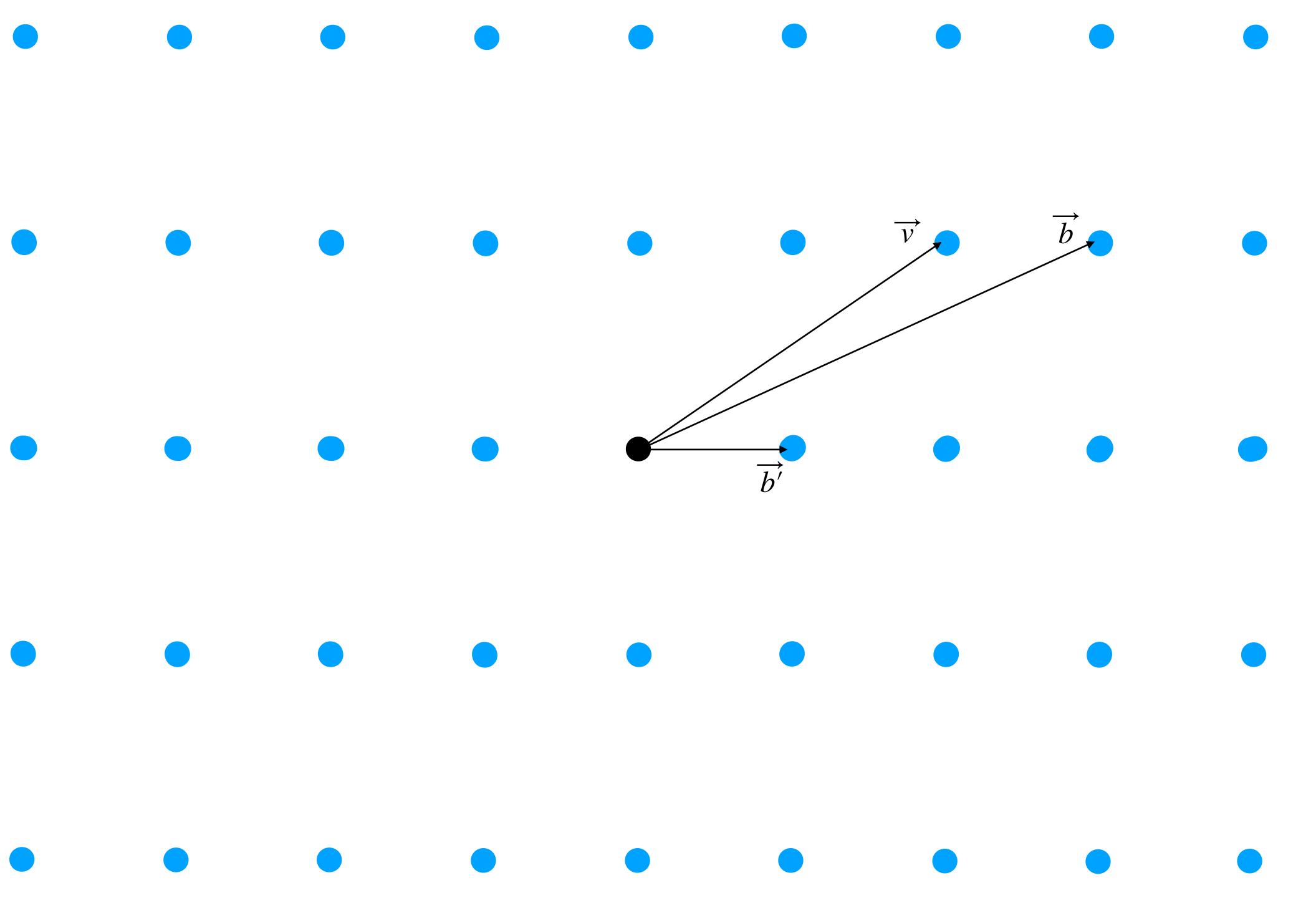


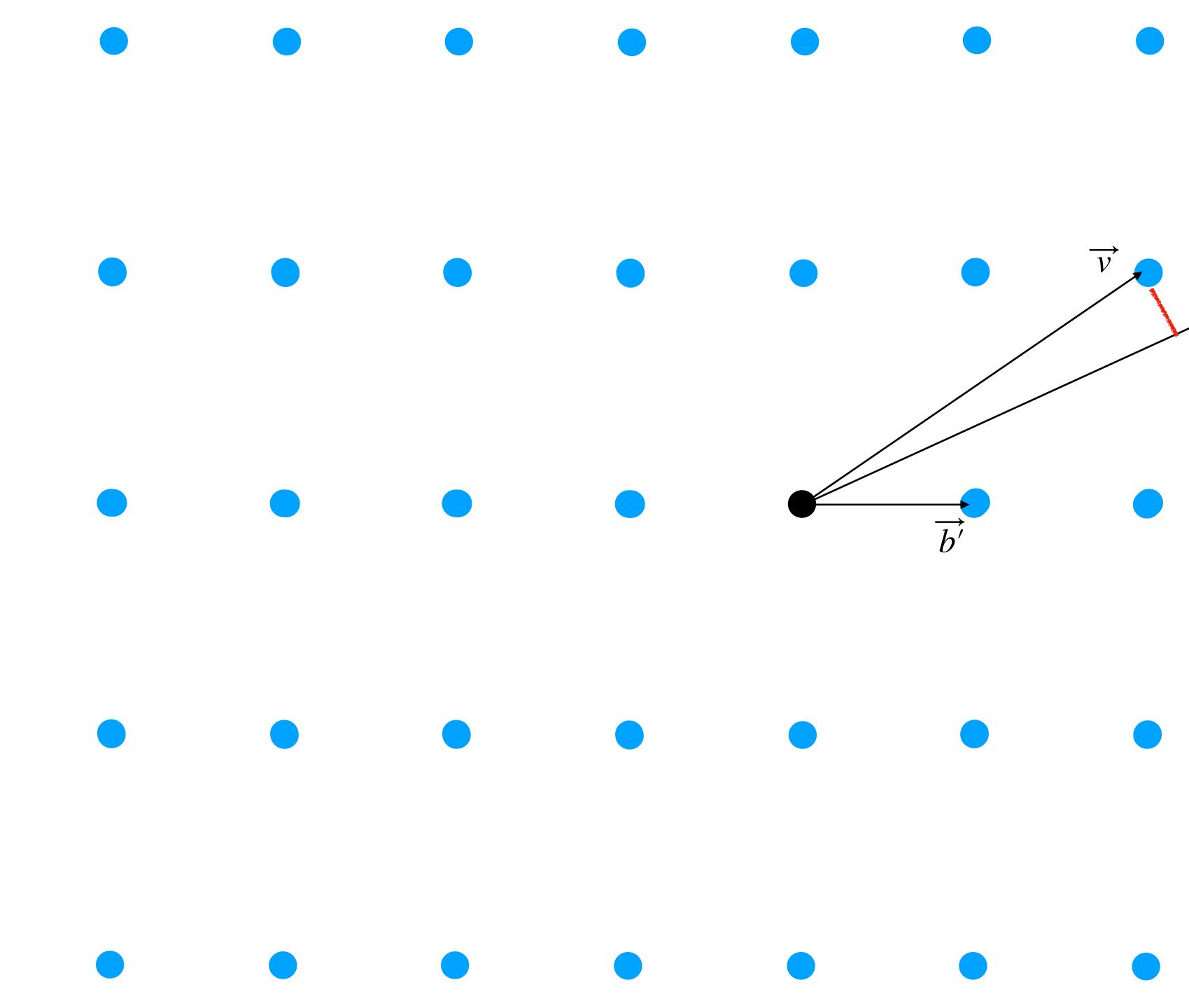


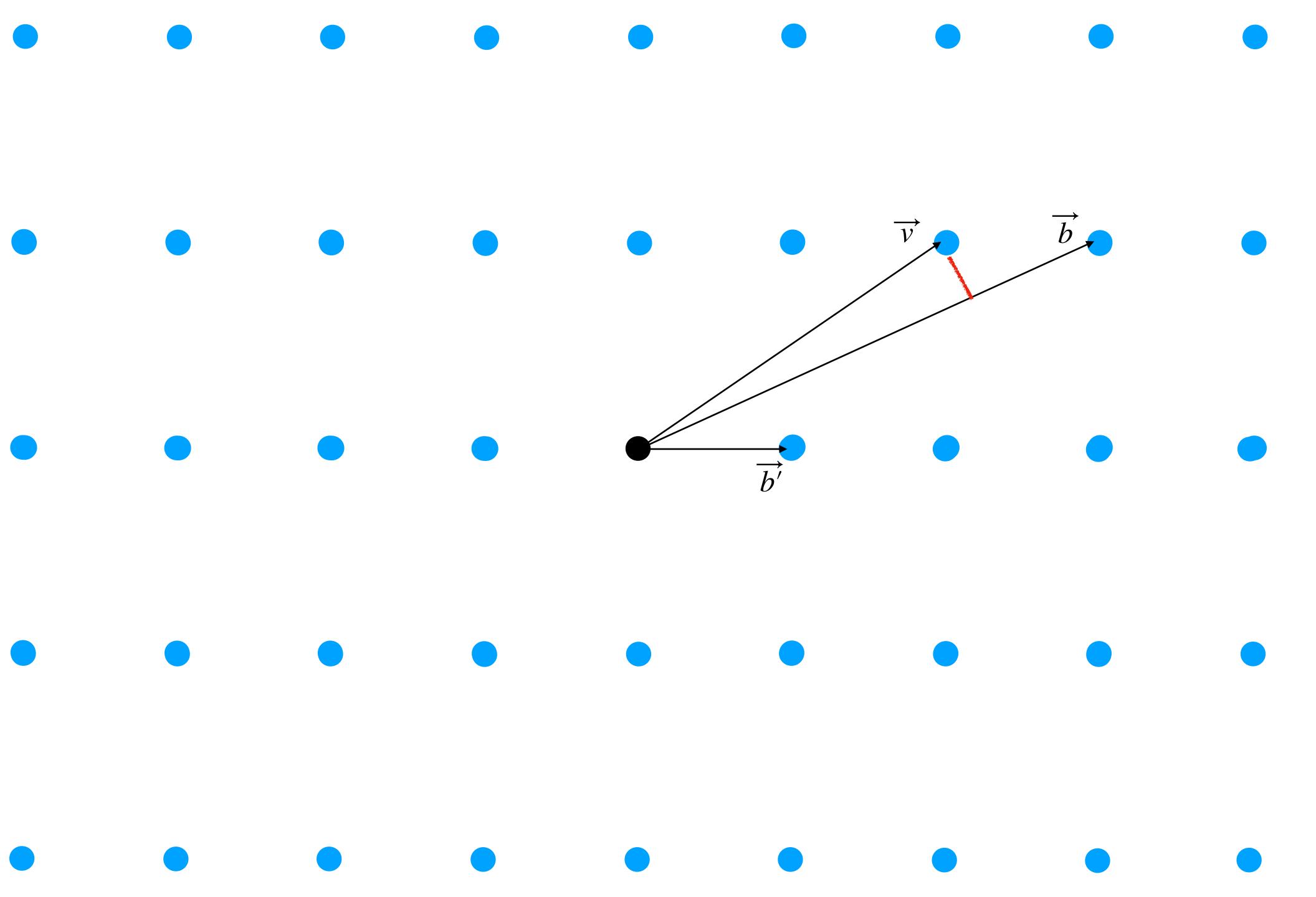


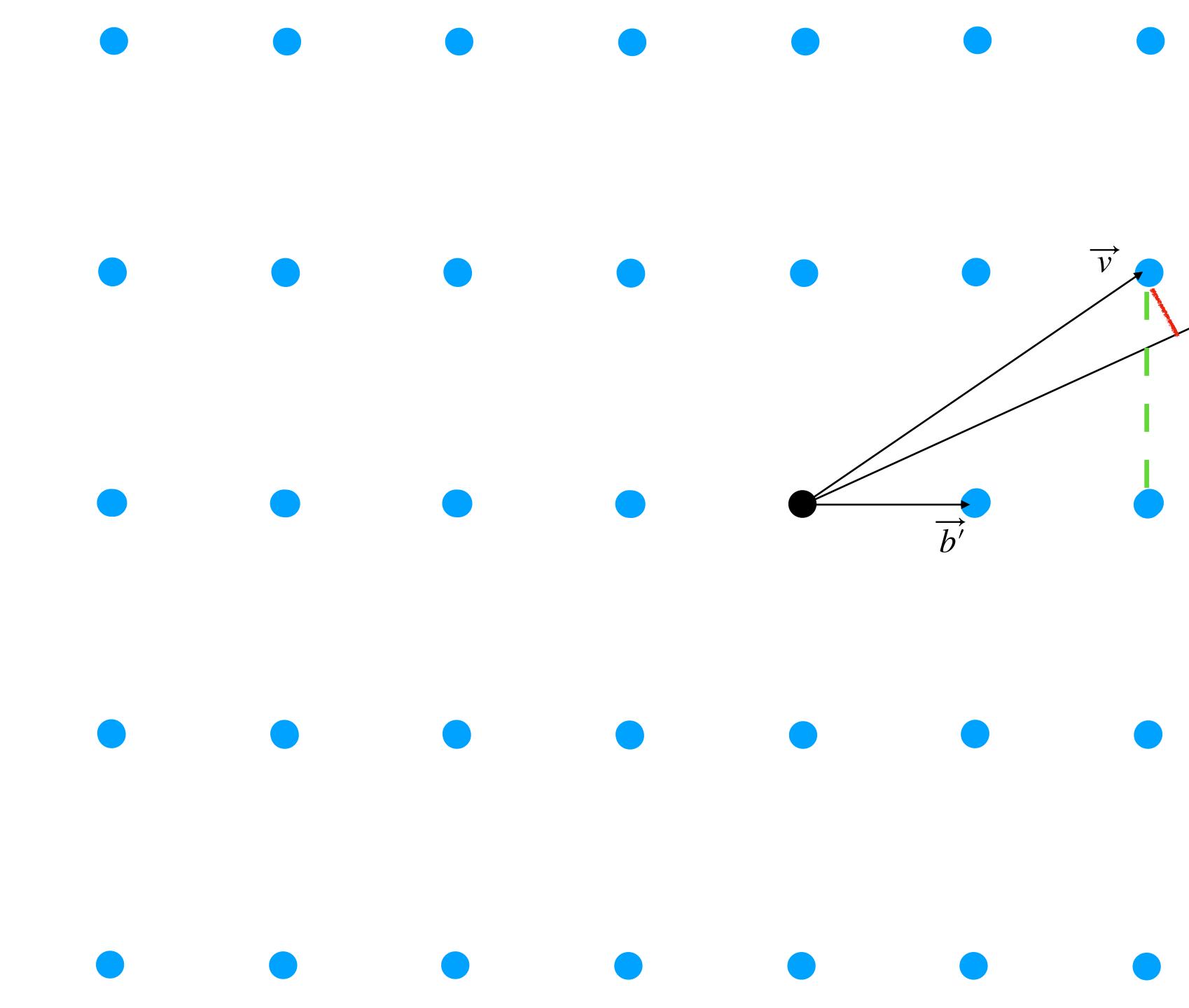


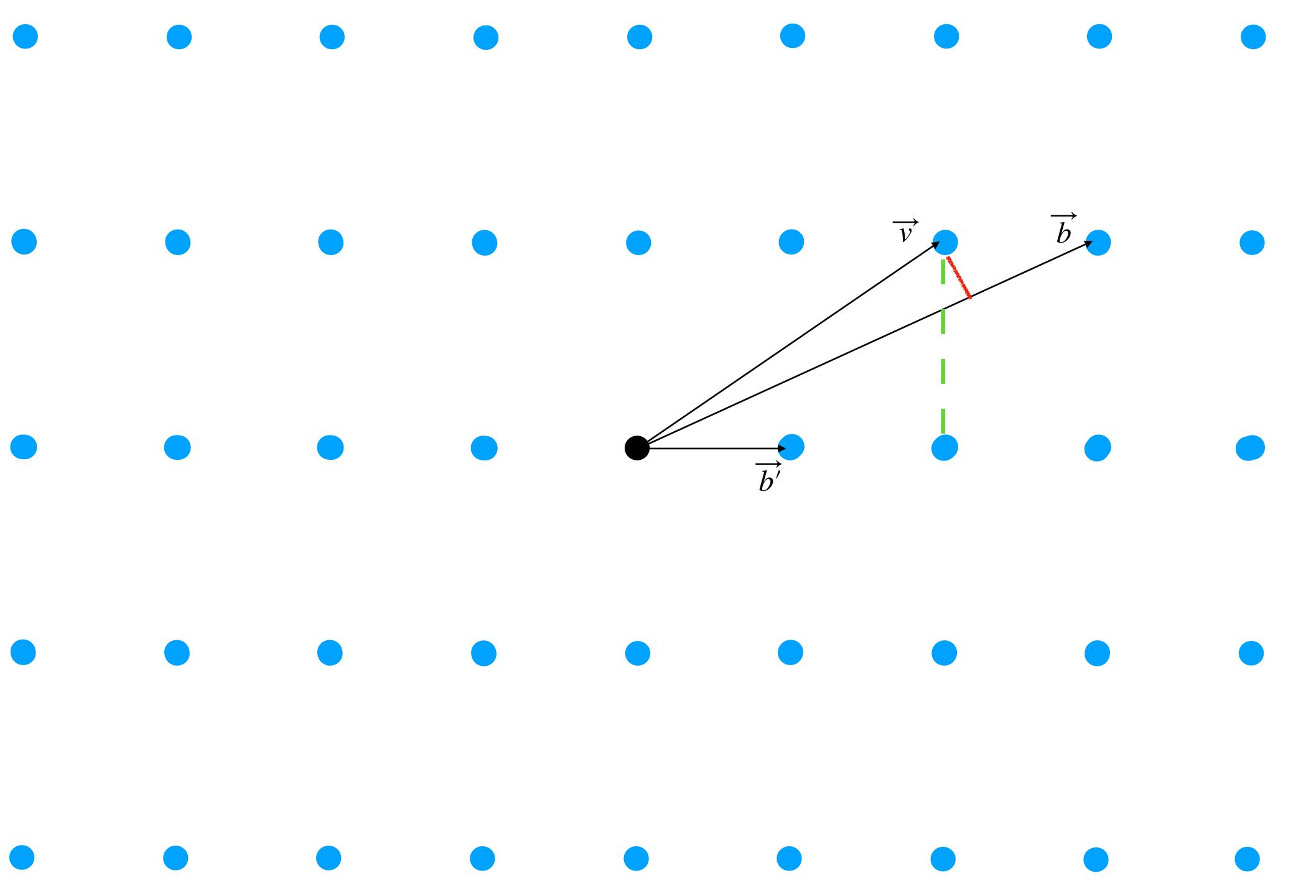












Equivalence Theorem using Dual Lattice

A dual lattice of a lattice \mathscr{L} is a lattice \mathscr{L}' such that

A dual lattice of a lattice \mathscr{L} is a lattice \mathscr{L}' such that

$\mathscr{L}' = \{ y \mid \langle x, y \rangle \in \mathbb{Z}, \forall x \in \mathscr{L} \}$

A dual lattice of a lattice \mathscr{L} is a lattice \mathscr{L}' such that

$\mathscr{L}' = \{ y \mid \langle x, y \rangle \in \mathbb{Z}, \forall x \in \mathscr{L} \}$

A dual lattice of a lattice \mathscr{L} is a lattice \mathscr{L}' such that

$$\mathscr{L}' = \{ y \mid < x$$

If B is a basis for \mathscr{L} , then B^{-T} (dual of B) is a basis for \mathscr{L}' .

$x, y > \in \mathbb{Z}, \forall x \in \mathcal{L}\}$

Theorem

Theorem

(Karp) reductions between CVP and MDSP.

Given an MDSP input $[\overrightarrow{v}, \overrightarrow{b}_1, ..., \overrightarrow{b}_n]$, the CVP instance is the basis $[\overrightarrow{d}_1, ..., \overrightarrow{d}_n]$ and target is \overrightarrow{u} where $[\overrightarrow{u}, \overrightarrow{d}_1, ..., \overrightarrow{d}_n]$ is the dual of $[\overrightarrow{v}, \overrightarrow{b}_1, \dots, \overrightarrow{b}_n].$

There exist polynomial time rank and dimension preserving many-one

Equivalence Theorem without using Dual Lattice

Observation

Observation

• Given an MDSP input $[\overrightarrow{v}, \overrightarrow{b}_1, ..., \overrightarrow{b}_n]$, there is a solution of the form $[\overrightarrow{v}, \overrightarrow{b}_1 + x_1 \overrightarrow{v}, ..., \overrightarrow{b}_n + x_n \overrightarrow{v}]$ where x_i 's are integers.

Observation • Given an MDSP input $[\overrightarrow{v}, \overrightarrow{b}_1, \dots, \overrightarrow{b}_n]$, there is a solution of the form $[\overrightarrow{v}, \overrightarrow{b}_1 + x_1 \overrightarrow{v}, ..., \overrightarrow{b}_n + x_n \overrightarrow{v}]$ where x_i 's are integers.

• We are interested in the distance of \vec{v} from the plane/subspace

 $P_{x_1,...,x_n}$ where $P_{x_1,...,x_n}$ is the spanned by $[\overrightarrow{b}_1 + x_1 \overrightarrow{v}, ..., \overrightarrow{b}_n + x_n \overrightarrow{v}]$.

Observation • Given an MDSP input $[\vec{v}, \vec{b}_1, \dots, \vec{b}_n]$, there is a solution of the form $[\overrightarrow{v}, \overrightarrow{b}_1 + x_1 \overrightarrow{v}, ..., \overrightarrow{b}_n + x_n \overrightarrow{v}]$ where x_i 's are integers.

- We are interested in the distance of \vec{v} from the plane/subspace
- Lemma: Let $\{\overrightarrow{v}, \overrightarrow{b_1}, \dots, \overrightarrow{b_n}\}$ be an orthonormal basis. Then the

distance of point \overrightarrow{v} from P_{x_1,\ldots,x_n}

 $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

 $P_{x_1,...,x_n}$ where $P_{x_1,...,x_n}$ is the spanned by $[\overrightarrow{b}_1 + x_1 \overrightarrow{v}, ..., \overrightarrow{b}_n + x_n \overrightarrow{v}]$.

$$x_n$$
 is $1/\sqrt{1 + \sum_{i=1}^n x_i^2}$ for any

• Therorem: Let $\{\overrightarrow{v}, \overrightarrow{b_1}, ..., \overrightarrow{b_n}\}$ be an orthogonal basis in which all but \overrightarrow{v} are unit vectors. Then the distance of point \overrightarrow{v} from $P_{x_1,...,x_n}$ is $\|\overrightarrow{v}\|/\sqrt{1+\|\overrightarrow{v}\|^2}\sum_{i=1}^n x_i^2$ for any $(x_1,...,x_n) \in \mathbb{R}^n$.

- Therorem: Let $\{\overrightarrow{v}, \overrightarrow{b_1}, ..., \overrightarrow{b_n}\}$ be an orthogonal basis in which all but \overrightarrow{v} are unit vectors. Then the distance of point \overrightarrow{v} from $P_{x_1,...,x_n}$ is $\|\overrightarrow{v}\|/\sqrt{1+\|\overrightarrow{v}\|^2}\sum_{i=1}^n x_i^2$ for any $(x_1,...,x_n) \in \mathbb{R}^n$.
- The MDSP input $\{\overrightarrow{v}, \overrightarrow{b_1}, ..., \overrightarrow{b_n}\}$ needs not be orthogonal. Let $\overrightarrow{b}'_i = \overrightarrow{b}_i \gamma_i \overrightarrow{v}$ be the orthogonal component of \overrightarrow{b}_i perpendicular to \overrightarrow{v} . Let $B' = [\overrightarrow{b}'_1, ..., \overrightarrow{b}'_n]$ and B'' be the Gram Schmidt Orthonormalization of B', i.e., B'' = B'L.

- Therorem: Let $\{\vec{v}, \vec{b_1}, \dots, \vec{b_n}\}$ be an orthogonal basis in which all but \vec{v} are unit vectors. Then the distance of point \overrightarrow{v} from P_{χ_1,\ldots,χ_n} is $\|\vec{v}\|/\sqrt{1+\|\vec{v}\|^2}\sum_{i=1}^n x_i^2$ for any (x_i)
- The MDSP input $\{\vec{v}, \vec{b_1}, ..., \vec{b_n}\}$ needs not be orthogonal. Let $\vec{b}_i' = \vec{b}_i \gamma_i \vec{v}$ be the orthogonal component of \vec{b}_i perpendicular to \vec{v} . Let $B' = [\vec{b}_1', ..., \vec{b}_n']$ and B'' be the Gram Schmidt Orthonormalization of B', i.e., B'' = B'L.
- The CVP instance is the basis L^T and target vector is $\vec{u} = -L^T \vec{\gamma}$.

$$(x_1, \ldots, x_n) \in \mathbb{R}^n.$$

• We looked into the definition of lattice, CVP, MDSP and Dual lattice.

- We looked into the definition of lattice, CVP, MDSP and Dual lattice.
- We saw equivalence between CVP and MDSP using dual lattice.

- We looked into the definition of lattice, CVP, MDSP and Dual lattice.
- We saw equivalence between CVP and MDSP using dual lattice.
- We saw equivalence between CVP and MDSP without using dual lattice.

- We looked into the definition of lattice, CVP, MDSP and Dual lattice.
- We saw equivalence between CVP and MDSP using dual lattice.
- We saw equivalence between CVP and MDSP without using dual lattice.
- What is the relation between the dual lattice and the lattice in the second reduction.

Thank You !