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Monomial Prediction Problem



Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.
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Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.
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Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting

, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.
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Definitions



Complexity Classes

⊕P Class
In computational complexity theory, the complexity class ⊕P (pronounced ‘parity P’)
is the class of decision problems solvable by a nondeterministic Turing machine in
polynomial time, where the acceptance condition is that the number of accepting
computation paths is odd.

#P Class
The class #P is the class of function problems of the form “compute f (x)", where f is
the number of accepting paths of a nondeterministic Turing machine running in
polynomial time.

One can think of ⊕ as #P problems (mod 2).
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Hardness result



Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1 ) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi )j ) ≤ 2 } .

➢ f = (f1, . . . , fnr+1 ).

➢ gi maps ni bits to ni+1 bits.

➢ (gi )j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).
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Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.
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Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j )i,j∈[n] .

Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi )j ) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2 ) = gn ◦ . . . ◦ g0.
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(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi )j ) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2 ) = gn ◦ . . . ◦ g0.
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Proof sketch: The polynomials

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

(gℓ (w , s))k :=

∑n

r=1 wi,r · sr ,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
si,j , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).
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Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.
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Proof sketch

Claim 2

For any ℓ ≥ 2 and k ∈ [n2],

(gℓ (. . . (g0 (x, y , z) . . .))k

= yizj ·
∑︁

1≤m1 ,...,mℓ−1≤n
xi,m1 xm1 ,m2 · · · xmℓ−2 ,mℓ−1 xmℓ−1 ,j ·

(
ℓ−1∏
s=1

yms zms

)
.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn (. . . (g0 (x, y , z) . . .)1

= y1z1 ·
∑︁

1≤m1 ,...,mn−1≤n
x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 ·

(n−1∏
s=1

yms zms

)
=

( n∏
s=1

yms zms

)
·

∑︁
1≤m1 ,...,mn−1≤n

x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 .
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Ascon and new zero sum distinguishers



Ascon specification

❑ Ascon is a permutation-based family of authenticated encryption with associated
data algorithms (AEAD).

❑ It is the first choice for lightweight applications in the CAESAR competition and
the NIST lightweight cryptography standardization.

❑ The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm.

❑ It operates on a 320-bit state arranged into five 64-bit words and is defined as
p : pL ◦ pS ◦ pC.
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pC function

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of word
X2 at each round.

13



pS function

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns. Let
(x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the Sbox,
respectively.



y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)
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pL function

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation Σi
which is defined below.



X0 ← Σ0 (Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)
X1 ← Σ1 (Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)
X2 ← Σ2 (Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)
X3 ← Σ3 (Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)
X4 ← Σ4 (Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)
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New zero sum distinguishers

The state at the input of r-th round is denoted by X r
0∥X

r
1∥X

r
2∥X

r
3∥X

r
4.

We first gave a
new zero sum distinguisher for 5 rounds with complexity 215 by finding a monomial
that was missing from the output polynomial.

Rounds Cube size Cube indices (X0
3 = X0

4 ) Output indices (X5
0 )

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128
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0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128
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New zero sum distinguishers

The state at the input of r-th round is denoted by X r
0∥X

r
1∥X

r
2∥X

r
3∥X

r
4. We first gave a

new zero sum distinguisher for 5 rounds with complexity 215 by finding a monomial
that was missing from the output polynomial.

Rounds Cube size Cube indices (X0
3 = X0

4 ) Output indices (X5
0 )

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128
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Conclusion



Concluding remarks

❑ Can we extend our theorem to composition of bounded degree functions?

❑ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?
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