
Complexity of Monomial Prediction in Cryptography and
Machine Learning
Joint work with Pranjal Dutta (NUS) and Santanu Sarkar (IIT Madras).

Mahesh Sreekumar Rajasree

IIT Delhi

SYNASC 2024

Table of Contents

1. Monomial Prediction Problem

2. Definitions

3. Hardness result

4. Ascon and new zero sum distinguishers

5. Conclusion

1

Monomial Prediction Problem

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic?

Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc.

In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs?

These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Introduction

Monomail prediction problem
Given a composition of quadratic/PGC functions f := fr ◦ fr−1 ◦ . . . f0, and a
monomial m, where each fi : Fn

2 −→ F
n
2, decide the coefficient of m in f (1) .

❑ Why quadratic? Almost every symmetric key cryptosystems are based on
composition of quadratic functions.

❑ E.g. KECCAK, Trivium, Ascon, TinyJAMBU, etc. In-fact, in these systems, all
fi ’s are the same.

❑ Knowing the coefficients may lead to an attack.

❑ Cube attacks can detect non-randomness if there are monomials missing.

❑ Why PGCs? These are representations of multivariate probability generating
polynomials (PGPs), which capture many tractable probabilistic models in
machine learning.

2

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC

where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;

Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;

Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Probability Generating Circuits

Probability Generating Polynomials
Let Pr be a probability distribution over binary random variables X1,X2, · · · ,Xn, then
the probability generating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑︁

S⊆{1, · · · ,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S, {Xi = 0}i∉S] and xS =
∏

i∈S xi

❑ A circuit that generate a PGP is a PGC where a circuit is a directed acyclic graph
consisting of three types of nodes:

Sum nodes + with weighted edges to children;
Product nodes × with unweighted edges to children;
Leaf nodes, which are variables xi or constants.

3

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting

, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Prior works

❑ [Kayal, 2010] studied this problem in a generalization setting, i.e., he considered
arbitrary finite field F.

❑ Showed that it is #P-Complete.

❑ Studied by [Malod, 2003] in his PhD thesis.

❑ Cube testers can be used to decide existence of a monomial, but too expensive.

❑ [Hu et al., 2020] presented monomial trail concept which decides when a
monomial exists in such composition of functions.

4

Definitions

Complexity Classes

⊕P Class
In computational complexity theory, the complexity class ⊕P (pronounced ‘parity P’)
is the class of decision problems solvable by a nondeterministic Turing machine in
polynomial time, where the acceptance condition is that the number of accepting
computation paths is odd.

#P Class
The class #P is the class of function problems of the form “compute f (x)", where f is
the number of accepting paths of a nondeterministic Turing machine running in
polynomial time.

One can think of ⊕ as #P problems (mod 2).

5

Complexity Classes

⊕P Class
In computational complexity theory, the complexity class ⊕P (pronounced ‘parity P’)
is the class of decision problems solvable by a nondeterministic Turing machine in
polynomial time, where the acceptance condition is that the number of accepting
computation paths is odd.

#P Class
The class #P is the class of function problems of the form “compute f (x)", where f is
the number of accepting paths of a nondeterministic Turing machine running in
polynomial time.

One can think of ⊕ as #P problems (mod 2).

5

Complexity Classes

⊕P Class
In computational complexity theory, the complexity class ⊕P (pronounced ‘parity P’)
is the class of decision problems solvable by a nondeterministic Turing machine in
polynomial time, where the acceptance condition is that the number of accepting
computation paths is odd.

#P Class
The class #P is the class of function problems of the form “compute f (x)", where f is
the number of accepting paths of a nondeterministic Turing machine running in
polynomial time.

One can think of ⊕ as #P problems (mod 2).

5

Hardness result

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Theorem

Language L

Consider the following language.

L := {(f ,m) | coefm (f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : F
ni
2 −→ F

ni+1
2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2 [x1, . . . , xn], and deg((gi)j) ≤ 2 } .

➢ f = (f1, . . . , fnr+1).

➢ gi maps ni bits to ni+1 bits.

➢ (gi)j ’s are either constant, linear or quadratic (PGF).

Theorem: Hardness of monomial prediction
Given a composition of quadratic (/PGP) functions f and a monomial m, deciding
whether (f ,m) ∈ L is ⊕P-complete (#P-complete).

6

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n.

If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Hamiltonian problem

Recall

❑ Hamiltonian cycle: it is a closed loop on a graph where every node (vertex) is
visited exactly once.

❑ Odd Hamiltonian Cycle – deciding whether a given graph G = (V ,E) has an
odd number of Hamiltonian cycles, is ⊕P-hard.

❑ Hamiltonian Cycle polynomial - HCn
(
x1,1, . . . , xn,n

)
=

∑
𝜎∈Sn

∏n
i=1 xi,𝜎 (i)

where Sn is the symmetric group on a set of size n. If (x1,1, . . . , xn,n) is
adjacency matrix, then HCn counts the number of Hamiltonian cycles.

We will show Odd Hamiltonian Cycle ≤p L.

7

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] .

Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables.

Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and

gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n],

with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),

where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: Core lemma

Lemma:Composition lemma
Let G = (V ,E) be a given graph with the adjacency matrix x = (xi,j)i,j∈[n] . Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then, there exist g0, . . . , gn,
polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F
2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1 · · ·yn ·z1 · · ·zn (f1 (x, y , z)) = HCn (x),where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

8

Proof sketch: The polynomials

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

(gℓ (w , s))k :=

∑n

r=1 wi,r · sr ,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
si,j , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

9

Proof sketch: The polynomials

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

(gℓ (w , s))k :=

∑n

r=1 wi,r · sr ,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
si,j , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

9

Proof sketch: The polynomials

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

(gℓ (w , s))k :=

∑n

r=1 wi,r · sr ,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
si,j , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

9

Proof sketch: The polynomials

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

(gℓ (w , s))k :=

∑n

r=1 wi,r · sr ,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
si,j , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

9

Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.

10

Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.

10

Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.

10

Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.

10

Proof sketch

Claim 1
For any ℓ ≥ 1,

(gℓ (. . . (g0 (x, y , z) . . .)k = xi,j · yi · zj

for k ∈ [n2 + 1, 2n2], where k − 1 − n2 = (i − 1) + n(j − 1).

Let us prove for ℓ = 1, i.e., g1 (g0 (x, y , z)).

(g0 (x, y , z))k :=
xi,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1 − n2 = (i − 1) + n(j − 1).

(g1 (w , s))k :=
wi,j · si,j , when k ≤ n2,where k − 1 = (i − 1) + n(j − 1),
(g1 (w , s))k−n2 , when n2 < k ≤ 2n2.

For ℓ > 1, observe that gℓ is an identity map in the last n2 coordinates.

10

Proof sketch

Claim 2

For any ℓ ≥ 2 and k ∈ [n2],

(gℓ (. . . (g0 (x, y , z) . . .))k

= yizj ·
∑︁

1≤m1 ,...,mℓ−1≤n
xi,m1 xm1 ,m2 · · · xmℓ−2 ,mℓ−1 xmℓ−1 ,j ·

(
ℓ−1∏
s=1

yms zms

)
.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn (. . . (g0 (x, y , z) . . .)1

= y1z1 ·
∑︁

1≤m1 ,...,mn−1≤n
x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 ·

(n−1∏
s=1

yms zms

)
=

(n∏
s=1

yms zms

)
·

∑︁
1≤m1 ,...,mn−1≤n

x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 .

11

Proof sketch

Claim 2

For any ℓ ≥ 2 and k ∈ [n2],

(gℓ (. . . (g0 (x, y , z) . . .))k

= yizj ·
∑︁

1≤m1 ,...,mℓ−1≤n
xi,m1 xm1 ,m2 · · · xmℓ−2 ,mℓ−1 xmℓ−1 ,j ·

(
ℓ−1∏
s=1

yms zms

)
.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn (. . . (g0 (x, y , z) . . .)1

= y1z1 ·
∑︁

1≤m1 ,...,mn−1≤n
x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 ·

(n−1∏
s=1

yms zms

)
=

(n∏
s=1

yms zms

)
·

∑︁
1≤m1 ,...,mn−1≤n

x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 .

11

Proof sketch

Claim 2

For any ℓ ≥ 2 and k ∈ [n2],

(gℓ (. . . (g0 (x, y , z) . . .))k

= yizj ·
∑︁

1≤m1 ,...,mℓ−1≤n
xi,m1 xm1 ,m2 · · · xmℓ−2 ,mℓ−1 xmℓ−1 ,j ·

(
ℓ−1∏
s=1

yms zms

)
.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn (. . . (g0 (x, y , z) . . .)1

= y1z1 ·
∑︁

1≤m1 ,...,mn−1≤n
x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 ·

(n−1∏
s=1

yms zms

)
=

(n∏
s=1

yms zms

)
·

∑︁
1≤m1 ,...,mn−1≤n

x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 .

11

Proof sketch

Claim 2

For any ℓ ≥ 2 and k ∈ [n2],

(gℓ (. . . (g0 (x, y , z) . . .))k

= yizj ·
∑︁

1≤m1 ,...,mℓ−1≤n
xi,m1 xm1 ,m2 · · · xmℓ−2 ,mℓ−1 xmℓ−1 ,j ·

(
ℓ−1∏
s=1

yms zms

)
.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn (. . . (g0 (x, y , z) . . .)1

= y1z1 ·
∑︁

1≤m1 ,...,mn−1≤n
x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 ·

(n−1∏
s=1

yms zms

)
=

(n∏
s=1

yms zms

)
·

∑︁
1≤m1 ,...,mn−1≤n

x1,m1 xm1 ,m2 · · · xmn−2 ,mn−1 xmn−1 ,1 .

11

Ascon and new zero sum distinguishers

Ascon specification

❑ Ascon is a permutation-based family of authenticated encryption with associated
data algorithms (AEAD).

❑ It is the first choice for lightweight applications in the CAESAR competition and
the NIST lightweight cryptography standardization.

❑ The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm.

❑ It operates on a 320-bit state arranged into five 64-bit words and is defined as
p : pL ◦ pS ◦ pC.

12

Ascon specification

❑ Ascon is a permutation-based family of authenticated encryption with associated
data algorithms (AEAD).

❑ It is the first choice for lightweight applications in the CAESAR competition and
the NIST lightweight cryptography standardization.

❑ The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm.

❑ It operates on a 320-bit state arranged into five 64-bit words and is defined as
p : pL ◦ pS ◦ pC.

12

Ascon specification

❑ Ascon is a permutation-based family of authenticated encryption with associated
data algorithms (AEAD).

❑ It is the first choice for lightweight applications in the CAESAR competition and
the NIST lightweight cryptography standardization.

❑ The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm.

❑ It operates on a 320-bit state arranged into five 64-bit words and is defined as
p : pL ◦ pS ◦ pC.

12

Ascon specification

❑ Ascon is a permutation-based family of authenticated encryption with associated
data algorithms (AEAD).

❑ It is the first choice for lightweight applications in the CAESAR competition and
the NIST lightweight cryptography standardization.

❑ The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm.

❑ It operates on a 320-bit state arranged into five 64-bit words and is defined as
p : pL ◦ pS ◦ pC.

12

pC function

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of word
X2 at each round.

13

pS function

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns. Let
(x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the Sbox,
respectively.



y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)

14

pS function

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns. Let
(x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the Sbox,
respectively.



y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)

14

pL function

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation Σi
which is defined below.



X0 ← Σ0 (Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)
X1 ← Σ1 (Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)
X2 ← Σ2 (Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)
X3 ← Σ3 (Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)
X4 ← Σ4 (Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)

15

pL function

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation Σi
which is defined below.



X0 ← Σ0 (Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)
X1 ← Σ1 (Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)
X2 ← Σ2 (Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)
X3 ← Σ3 (Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)
X4 ← Σ4 (Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)

15

New zero sum distinguishers

The state at the input of r-th round is denoted by X r
0∥X

r
1∥X

r
2∥X

r
3∥X

r
4.

We first gave a
new zero sum distinguisher for 5 rounds with complexity 215 by finding a monomial
that was missing from the output polynomial.

Rounds Cube size Cube indices (X0
3 = X0

4) Output indices (X5
0)

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128

16

New zero sum distinguishers

The state at the input of r-th round is denoted by X r
0∥X

r
1∥X

r
2∥X

r
3∥X

r
4. We first gave a

new zero sum distinguisher for 5 rounds with complexity 215 by finding a monomial
that was missing from the output polynomial.

Rounds Cube size Cube indices (X0
3 = X0

4) Output indices (X5
0)

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128

16

New zero sum distinguishers

The state at the input of r-th round is denoted by X r
0∥X

r
1∥X

r
2∥X

r
3∥X

r
4. We first gave a

new zero sum distinguisher for 5 rounds with complexity 215 by finding a monomial
that was missing from the output polynomial.

Rounds Cube size Cube indices (X0
3 = X0

4) Output indices (X5
0)

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 1: List of cubes for 5-round Ascon-128

16

Conclusion

Concluding remarks

❑ Can we extend our theorem to composition of bounded degree functions?

❑ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?

17

Concluding remarks

❑ Can we extend our theorem to composition of bounded degree functions?

❑ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?

17

Concluding remarks

❑ Can we extend our theorem to composition of bounded degree functions?

❑ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?

17

Concluding remarks

❑ Can we extend our theorem to composition of bounded degree functions?

❑ Is it possible to model an MILP to find whether a monomial is missing?

Thank you. Questions?

17

	Monomial Prediction Problem
	Definitions
	Hardness result
	Ascon and new zero sum distinguishers
	Conclusion

