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Bases of a lattice

 and  are bases of a lattice  where  is a 
unimodular matrix.
B B′ ℒ ⟺ B′ = BU U

A matrix  is unimodular if  and .U U ∈ ℤn×n det(U) = ± 1

Therefore, a lattice can have infinitely many bases!

B′ = BU, B = B′ V ⟹ B′ = B′ VU ⟹ I = VU .



Applications



Applications

• Factoring rational polynomials.



Applications

• Factoring rational polynomials.

• Integer linear programming.



Applications

• Factoring rational polynomials.

• Integer linear programming.

• Cryptanalysis of RSA, knapsack cryptosystems.



Applications

• Factoring rational polynomials.

• Integer linear programming.

• Cryptanalysis of RSA, knapsack cryptosystems.

• Building very strong cryptographic primitives (post-quantum).
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Closest Vector Problem (CVP)

Given a basis  and a target , find a vector  
such that  is closest to , i.e., 


B = {b1, …, bn} t ∈ ℝn v ∈ ℒ(B)
v t

| |v − t | | ≤ | |u − t | | , ∀u ∈ ℒ(B)
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Facts about CVP
• CVP is NP-Complete under all norms.

• Al-most all other lattice problems reduces to CVP in polynomial time.

Algorithm Time Space

Enumeration

Sieving

Voronoi

Gaussian

nO(n) poly(n)

2O(n) 2O(n)

Õ(22n) Õ(2n)

2n+o(n) 2n+o(n)
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Other lattice problems
• Given a basis , the Shortest Vector Problem (SVP) asks for a shortest 

non-zero vector , i.e.,  for all .
B

v ∈ ℒ(B) | |v | | ≤ | |u | | u ∈ ℒ(B)∖{0}

• The -th Successive minimum  for a lattice  is the radius of 
smallest sphere centered at the origin containing at least  independent 
lattice vectors.

i λi(ℒ(B)) ℒ
i

λi(ℒ) = inf{r | dim(ℒ ∩ ℬ(0,r)) ≥ i}

where  is the sphere entered at  with radius .ℬ(x, y) x y
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The Voronoi cell of a lattice  is defined as 





In other words, it is set of all points that are closer to the origin than all other non-zero lattice 
vectors.

ℒ

𝒱(ℒ) = {x ∈ ℝn | ∀v ∈ ℒ∖{0}, | |x | | ≤ | |x − v | |}

The half space of a non-zero lattice vector  is defined as
v ∈ ℒ

H(v) = {x ∈ ℝn | | |x | | ≤ | |x − v | |}

Observe that . 𝒱(ℒ) = ∩
v∈ℒ∖{0}

H(v)

There is a minimal set of lattice vectors called Voronoi relevant vectors  such that .V(L) 𝒱(ℒ) = ∩
v∈V(ℒ)

H(v)
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•  is the lattice spanned by .ℤn {e1, e2, …, en}

• A vector  in a lattice  is primitive if , .v ℒ ∀k > 1 v/k ∉ ℒ

•  is a basis of  is unimodular. 
( . But, both 

).

B ℤn ⟺ B
BC = I ⟹ det(B)det(C) = 1
B, C ∈ ℤn×n ⟹ det(B) = ± 1
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Main Theorem

Let  be a primitive vector such that . Then, there exists 
a unimodular matrix  such that  and 

.

v ∈ ℤn | |v | |2 > 1
B = {b1, b2, …, bn} bn = v

| |v | |2 > | |bi | |2 , ∀i ∈ [n − 1]
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Proof of Main Theorem

• Case 1: n = 2

• . Consider  such that .v = [a, b] b1 = [−d, c] c . a + b . d = 1

•  is unimodular.B = [b1, v]

• We can find  such that .c, d |c | < |b | , |d | < |a |
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Proof of Main Theorem
• Case 2:  has at least one component as 0.v

• WLOG, let vn = 0

• Consider b′ n = [v1, v2, …, vn−1]

• From induction hypothesis, there exists  such that 
.

B′ = [b′ 2, …, b′ n]
| |b′ i | |2 < | |b′ n | |2 = | |v | |2 , 2 ≤ i ≤ n − 1

• B = [0 B′ 

1 0 ]
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Proof of Main Theorem

• Case 3:  has at least one component as 1.v

• WLOG, let vn = 1

• B = [e1, …, en−1, v]
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•  and v = [vn, vn−1, …, v1] di = gcd(v1, v2, …, vi)

• Let  such that .ri, si ∈ ℤ rivi + sidi−1 = di

•
Let  where .T2 =

1 0 … 0 0
0 1 … 0 0
⋮
0 0 … r2 s2

0 0 … −d1/d2 v2/d2

d1 = v1

• T2v = [vn, vn−1, …, d2,0]T
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• Case 4: .vi ∉ {−1,0,1}

• Similarly, we can construct  using  such that 
.

Ti vi, si, di, di−1
TnTn−1…T2v = e1

• v = T−1
2 …, T−1

n−1T
−1
n e1
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Proof of Main Theorem
• Case 4: .vi ∉ {−1,0,1}

•

B = T−1
2 …, T−1

n−1T
−1
n =

vn −sn 0 … 0 0

vn−1
vn−1rn

dn−1
−sn−1 … 0 0

vn−2
vn−2rn

dn−1

vn−2rn−1

dn−2
… 0 0

⋮

v2
v2rn

dn−1

v2rn−1

dn−2
…

v2r3

d2
−s2

v1
v1rn

dn−1

v1rn−1

dn−2
…

v1r3

d2
r2
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Main theorem
Let  be a set of linearly independent lattice vector in a 
lattice  such that , then  is a subset of the set of 
Voronoi relevant vectors  of .

S = {s1, …, sn}
ℒ | |si | | = λi(ℒ) S

V(ℒ) ℒ

Given a basis , the Successive Minima Problem (SMP) 
ask for  linearly independent vectors  such that 

.

B = {b1, …, bn}
n {s1, …, sn} ⊆ ℒ(B)

| |si | | = λi(ℒ(B))
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Corollaries
1) For any lattice 
ℒ

λn(ℒ) ≤ | |V(ℒ) | | ≤
n3/2

2
λn(ℒ)

2) We can modify the algorithm given by Micciancio and Voulgaris to find 
a solution to SMP without using CVP oracles.
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Conclusion
• We looked into the definition of lattice, lattice problems and Voronoi cell 

and vectors.

• We showed how to construct a basis for  from a primitive vector  such 
that the rest of the basis vectors are strictly shorter than .

ℤn v
v

• Discussed that a solution to SMP is contained in the set of Voronoi 
relevant vectors.

• Is it possible to extend  to a basis  of 
 such that every ’s are strictly shorter than the longest 

v1, v2, …, vk [v1, …, vk, bk+1, …, bn]
ℤn bi vj .
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Proof for an SMP solution is a subset of V(ℒ)

•  is a Voronoi relevant vector of   are the only shortest vectors in v ℒ ⟺ ± v
v + 2ℒ

• This implies that if  is not Voronoi relevant, then  such that v ∃w ∈ ℒ∖{0,v}
| |v/2 − w | | ≤ | |v/2 | |

• Let us first show that all shortest vector belongs to . Assume the contrary.V(ℒ)

• | |s/2 − w | | < | |s/2 | | ⟹ | |s − 2w | | < | |s | |

•  Since, 
 But, this implies .

| |s/2 − w | | = | |s/2 | | ⟹ cos(θ) = | |w | | / | |s | | .
| |w | | ≥ | |s | | ⟹ cos(θ) ≥ 1. w = s
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• : We can show that . 

But, this implies that 
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• Assume that  and  for some .s1, …, si−1 ∈ V(ℒ) si ∉ V(ℒ) i

• : We can show that . 

But, this implies that 

| |si − 2w | | < | |si | | si − 2w ∈ Span(s1, …, si−1)
| |w | | = | |w − si/2 + si/2 | | < | |si | | ⟹ w ∈ Span(s1, …, si−1) .

si ∈ Span(s1, …, si−1) .

• : 
 , therefore 

 and . Also, 
. Therefore, 

| |si − 2w | | = | |si | |
| |w | |2 = < si, w > ⟹ cos(θ) = | |w | | / | |si | | . θ ≠ 0
| |si | | > | |w | | w ∈ Span(s1, …, si−1)
| |si − w | |2 = | |si | |2 − | |w | |2 < | |si | |2

si − w ∈ Span(s1, …, si−1) ⟹ si ∈ Span(s1, …, si−1) .
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