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A lattice generated by a set of linearly independent vectors
B=1{b,....,b,} is the set of all integer linear combinations of

by, ..., b}, e,

Lby,....b) ={ ) b | V(. ....2,) € Z")
=1

B is called a basis of £.
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Bases of a lattice

B and B’ are bases of a lattice ¥ < B’'= BU where U is a
unimodular matrix.

A matrix U is unimodular if U € Z"" and det(U) = % 1.
B '=BU,B=BV — B'=BVU — [I=VU.

Therefore, a lattice can have infinitely many bases!
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Applications

Factoring rational polynomials.
Integer linear programming.
Cryptanalysis of RSA, knapsack cryptosystems.

Building very strong cryptographic primitives (post-quantum).
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Closest Vector Problem (CVP)

Given a basis B = {b,, ..., b, } and a target t € R", find a vector v € Z£(B)
such that v is closest to 7, I.e.,

[lv=1t]| < ||u—t]|,Vue Z(B)
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Facts about CVP

 CVP is NP-Complete under all norms.

* Al-most all other lattice problems reduces to CVP in polynomial time.

Algorithm Space

Enumeration no" poly(n)
Sieving 20(n) 1 O(n)
\oronoi 02" 02"

Gaussian pn+o(n) Hn+o(n)
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Other lattice problems

« Given a basis B, the Shortest Vector Problem (SVP) asks for a shortest
non-zero vector v € ZL(B), i.e., ||v|| < ||u]|| forallu € Z(B)\{0}.

» The i-th Successive minimum A.(Z£(B)) for a lattice £ is the radius of

smallest sphere centered at the origin containing at least 1 independent
lattice vectors.

(L) = inflr | dim(Z 0 BO,r)) > i)

where SB(x, y) is the sphere entered at x with radius y.
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Voronol cell of a lattice

The Voronoi cell of a lattice £ is defined as
7(L)={xeR"|Vve Z\{0},||x|| < ||x—=vV]|}

In other words, it is set of all points that are closer to the origin than all other non-zero lattice
vectors.

The half space of a non-zero lattice vector v € £ is defined as

Hv)={xeR" | [|x]| <[lx=vV]|}

Observethat 7 (Z£X)= n H(©).
veZ\{0}

There is a minimal set of lattice vectors called Voronoi relevant vectors V(L) suchthat 7' (£) = n H(W).
veV(Z)
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Preliminaries

» /" is the lattice spanned by {¢;,e,, ..., ¢, }.
» A vector vin a lattice &£ is primitive if Vk > 1, v/ik & &£

e Bisabasisof Z" <= B is unimodular.
(BC =1 = det(B)det(C) = 1. But, both
B,C e 7" — det(B) = = 1).
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Main Theorem

Let v € 7" be a primitive vector such that ||v||* > 1. Then, there exists
a unimodular matrix B = {b, b,, ..., b, } such that b, = v and

v *>|15,]1°,Vie[n-1].
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Proof of Main Theorem

e Case1:n=2
» V= |a,b]. Consider by = [—d,c] suchthatc.a+b.d = 1.
e B =[b,v]isunimodular.

« We canfind c,dsuchthat |c| < |b],|d| < |a].
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Proof of Main Theorem

e Case 2: v has at least one component as 0.
« WLOG, letv, =0
« Consider b;l — [Vl, V2, c e Vn_l]

» From induction hypothesis, there exists B’ = [b,, ..., b, | such that
7112 112 2 .
b1 <ITb I 1" =TIVl 2<i<n—1.

0 B’
B =
Sl
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Proof of Main Theorem

e Case 3: v has at least one component as 1.
» WLOG, letv, =1

» B=le,...,e,_,V]
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Proof of Main Theorem

» Cased:v; & {—1,0,1}.
e v=1[v,v,_{,...,v{]and d; = gcd(v{, v,, ..., V;)

e Letr,s; € Zsuchthatryv,+sd._, =d.

11

1 0 ... 0 0
0 1 0 0
letT, = | : where d; = vy.
. 0 0 ... r S5
0 0 ... —=d//d, v,/d,

_ T
« Towv=lv,v,_{,...,d0]
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Proof of Main Theorem

» Cased:v; & {—1,0,1}.

» Similarly, we can construct T’ using v,, s;, d., d._; such that
TnTn—l .o T2V — 61.

— 71 —1 -1
=T, T T e,
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Proof of Main Theorem

» Cased:v; & {—1,0,1}.

v, -, 0 0
V V
n—1"n
n—1
V-2l Vi—2rn—1
_ -1 —1 —1 _ n—1 n—-2
B=T,'.., T\ T ' =
Vol Voln—1 Vols
V) —
dn—l dn—2 d2
ity Viru—1 VI3
Vi —
dn—l dn—2 d2
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Main theorem

Let S = {s7,...,5,} be a set of linearly independent lattice vector in a
lattice £ such that | |s; || = 4(Z), then § is a subset of the set of
Voronoi relevant vectors V(&) of <Z.

Given a basis B = {b, ..., b, }, the Successive Minima Problem (SMP)
ask for n linearly independent vectors {s, ..., s,} € Z(B) such that

[15;1 | = A(Z(B)).
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Corollaries

1) For any lattice &

3/2

(L) < | IV(@D)]] < ”TA,xff)

2) We can modify the algorithm given by Micciancio and Voulgaris to find
a solution to SMP without using CVP oracles.



Conclusion



Conclusion

 We looked into the definition of lattice, lattice problems and Voronoi cell
and vectors.



Conclusion

 We looked into the definition of lattice, lattice problems and Voronoi cell
and vectors.

» We showed how to construct a basis for Z" from a primitive vector v such
that the rest of the basis vectors are strictly shorter than v.



Conclusion

 We looked into the definition of lattice, lattice problems and Voronoi cell
and vectors.

» We showed how to construct a basis for Z" from a primitive vector v such
that the rest of the basis vectors are strictly shorter than v.

 Discussed that a solution to SMP is contained in the set of Voronoi
relevant vectors.



Conclusion

We looked into the definition of lattice, lattice problems and Voronoi cell
and vectors.

We showed how to construct a basis for Z”" from a primitive vector v such
that the rest of the basis vectors are strictly shorter than v.

Discussed that a solution to SMP is contained in the set of Voronoi
relevant vectors.

s it possible to extend v, v,, ..., v, to a basis [V, ..., Vi, by 5 ..., D, ] Of
Z" such that every b.’s are strictly shorter than the longest Vi.



Thank You !
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Proof for an SMP solution is a subset of V(&)

Vv is a Voronoi relevant vector of £ <= = v are the only shortest vectors in

v+ 2L

» This implies that if v is not Voronoi relevant, then dw € £\ {0,v} such that
[[vI2=wl|| < ||v/2]]

 Let us first show that all shortest vector belongs to V(£). Assume the contrary.
s |2 =wl| <[|s/2]| = ||s=2w[]| <[]s]|

e ||s/2—w||=||s/2|]| = cos(@) =||w]||/|]|s]||. Since,
[[w]||>]]|s|| = cos(8) > 1. But, this implies w = s.
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» Assume that s, ...,s,_; € V(&) and s; & V(L) for some i.

o ||s;—=2w]|| < |]s;]|: We can show that s; — 2w € Span(sy, ..., s;_;).
W] =||lw=s5/2+s/2]|| <]||s;|]| = we& Span(sy,...,s._;).
But, this implies that s; € Span(s, ..., s;_1) .

s = 2wl = []s;]1:
[w|]*=<s,w>=> cos@) = ||w||/||s;]]. 0% 0, therefore
s || > ||w]|| andw € Span(sy, ...,s;_;). Also,
2 2 2 2
[1s; = wl™= 115117 =[1wl]” <[ls;|]". Therefore,
s;—w € Span(sy, ...,8;_;) = §; € Span(sy,...,S;_1).



Thanks again!




