On the bases of \mathbb{Z}^n lattice

Shashank K Mehta, Mahesh Sreekumar Rajasree Department of Computer Science & Engineering IIT Kanpur

Contents

- Introduction
- Extension Lemma
- Successive Minima from Voronoi Relevant Vectors
- Conclusions

Introduction

Lattice

$\{b_1, \dots, b_n\}$, i.e.,

Lattice

A lattice generated by a set of linearly independent vectors

 $B = \{b_1, \dots, b_n\}$ is the set of all integer linear combinations of

A lattice generated by a set of linearly independent vectors $B = \{b_1, \dots, b_n\}$ is the set of all integer linear combinations of $\{b_1, \ldots, b_n\}$, i.e.,

 $\mathcal{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$ i=1

Lattice

Lattice

$\{b_1, \ldots, b_n\}$, i.e.,

 $\mathcal{L}(b_1, \dots, b_n) = \{ \sum z_i b_i \mid \forall (z_1, \dots, z_n) \in \mathbb{Z}^n \}$ i=1

B is called a *basis* of \mathscr{L} .

A lattice generated by a set of linearly independent vectors $B = \{b_1, \dots, b_n\}$ is the set of all integer linear combinations of

B and B' are bases of a lattice unimodular matrix.

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

 $B' = BU, B = B'V \implies B' = B'VU \implies I = VU.$

unimodular matrix.

A matrix U is unimodular if $U \in \mathbb{Z}^{n \times n}$ and $det(U) = \pm 1$.

 $B' = BU, B = B'V \implies B' = B'VU \implies I = VU.$

Therefore, a lattice can have infinitely many bases!

• Factoring rational polynomials.

- Factoring rational polynomials.
- Integer linear programming.

- Factoring rational polynomials.
- Integer linear programming.
- Cryptanalysis of RSA, knapsack cryptosystems.

- Factoring rational polynomials.
- Integer linear programming.
- Cryptanalysis of RSA, knapsack cryptosystems.
- Building very strong cryptographic primitives (post-quantum).

Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

such that v is closest to t, i.e.,

Given a basis $B = \{b_1, \dots, b_n\}$ and a target $t \in \mathbb{R}^n$, find a vector $v \in \mathscr{L}(B)$

 $||v-t|| \leq ||u-t||, \forall u \in \mathscr{L}(B)$

Facts about CVP

Facts about CVP

• CVP is NP-Complete under all norms.

Facts about CVP

- CVP is NP-Complete under all norms.

• Al-most all other lattice problems reduces to CVP in polynomial time.
Facts about CVP

- CVP is NP-Complete under all norms.
- Al-most all other lattice problems reduces to CVP in polynomial time.

Algorithm

Enumeration

Sieving

Voronoi

Gaussian

Time	Space
$n^{O(n)}$	poly(n)
$2^{O(n)}$	$2^{O(n)}$
$\tilde{O}(2^{2n})$	$\tilde{O}(2^n)$
$2^{n+o(n)}$	$2^{n+o(n)}$

• Given a basis B, the Shortest Vector Problem (SVP) asks for a shortest non-zero vector $v \in \mathscr{L}(B)$, i.e., $||v|| \leq ||u||$ for all $u \in \mathscr{L}(B) \setminus \{0\}$.

- Given a basis *B*, the Shortest Vector Problem (SVP) asks for a shortest non-zero vector $v \in \mathcal{L}(B)$, i.e., $||v|| \leq ||u||$ for all $u \in \mathcal{L}(B) \setminus \{0\}$.
- The *i*-th **Successive minimum** $\lambda_i(\mathscr{L}(B))$ for a lattice \mathscr{L} is the radius of smallest sphere centered at the origin containing at least *i* independent lattice vectors.

- Given a basis *B*, the **Shortest Vector Problem (SVP)** asks for a shortest non-zero vector $v \in \mathcal{L}(B)$, i.e., $||v|| \leq ||u||$ for all $u \in \mathcal{L}(B) \setminus \{0\}$.
- The *i*-th **Successive minimum** $\lambda_i(\mathscr{L}(B))$ for a lattice \mathscr{L} is the radius of smallest sphere centered at the origin containing at least *i* independent lattice vectors.

$$\lambda_i(\mathcal{L}) = \inf\{r \mid \dim(\mathcal{L} \cap \mathcal{B}(0,r)) \ge i\}$$

- Given a basis B, the Shortest Vector Problem (SVP) asks for a shortest non-zero vector $v \in \mathscr{L}(B)$, i.e., $||v|| \leq ||u||$ for all $u \in \mathscr{L}(B) \setminus \{0\}$.
- The *i*-th **Successive minimum** $\lambda_i(\mathscr{L}(B))$ for a lattice \mathscr{L} is the radius of smallest sphere centered at the origin containing at least *i* independent lattice vectors.

$$\lambda_i(\mathcal{L}) = \inf\{r \mid \dim(\mathcal{L} \cap \mathcal{B}(0,r)) \ge i\}$$

where $\mathscr{B}(x, y)$ is the sphere entered at x with radius y.

The Voronoi cell of a lattice \mathscr{L} is defined as

In other words, it is set of all points that are closer to the origin than all other non-zero lattice vectors.

 $\mathcal{V}(\mathcal{L}) = \{ x \in \mathbb{R}^n \mid \forall v \in \mathcal{L} \setminus \{0\}, ||x|| \le ||x - v|| \}$

The Voronoi cell of a lattice \mathscr{L} is defined as

vectors.

The half space of a non-zero lattice vector $v \in \mathscr{L}$ is defined as

- $\mathscr{V}(\mathscr{L}) = \{ x \in \mathbb{R}^n \mid \forall v \in \mathscr{L} \setminus \{0\}, ||x|| \le ||x v|| \}$
- In other words, it is set of all points that are closer to the origin than all other non-zero lattice

 - $H(v) = \{x \in \mathbb{R}^n \mid \|x\| \le \|x v\|\}$

The Voronoi cell of a lattice \mathscr{L} is defined as

vectors.

The half space of a non-zero lattice vector $v \in \mathscr{L}$ is defined as

Observe that $\mathscr{V}(\mathscr{L}) = \bigcap_{v \in \mathscr{L} \setminus \{0\}} H(v).$

- $\mathscr{V}(\mathscr{L}) = \{ x \in \mathbb{R}^n \mid \forall v \in \mathscr{L} \setminus \{0\}, ||x|| \le ||x v|| \}$
- In other words, it is set of all points that are closer to the origin than all other non-zero lattice

 - $H(v) = \{x \in \mathbb{R}^n \mid \|x\| \le \|x v\|\}$

The Voronoi cell of a lattice \mathscr{L} is defined as

vectors.

The half space of a non-zero lattice vector $v \in \mathscr{L}$ is defined as

Observe that
$$\mathscr{V}(\mathscr{L}) = \bigcap_{v \in \mathscr{L} \setminus \{0\}} H(v).$$

There is a minimal set of lattice vectors called Voronoi relevant vectors V(L) such that $\mathscr{V}(\mathscr{L}) = \cap H(v)$. $v \in V(\mathscr{L})$

- $\mathscr{V}(\mathscr{L}) = \{ x \in \mathbb{R}^n \mid \forall v \in \mathscr{L} \setminus \{0\}, ||x|| \le ||x v|| \}$
- In other words, it is set of all points that are closer to the origin than all other non-zero lattice

 - $H(v) = \{x \in \mathbb{R}^n \mid \|x\| \le \|x v\|\}$

Extension Lemma

• \mathbb{Z}^n is the lattice spanned by $\{e_1, e_2, \ldots, e_n\}$.

- \mathbb{Z}^n is the lattice spanned by $\{e_1, e_2, \ldots, e_n\}$.
- A vector v in a lattice \mathscr{L} is primitive if $\forall k > 1$, $v/k \notin \mathscr{L}$.

- \mathbb{Z}^n is the lattice spanned by $\{e_1, e_2\}$
- A vector v in a lattice \mathscr{L} is primitive if $\forall k > 1, v/k \notin \mathscr{L}$.
- *B* is a basis of $\mathbb{Z}^n \iff B$ is unimodular. $(BC = I \implies det(B)det(C) = 1$. But, both $B, C \in \mathbb{Z}^{n \times n} \implies det(B) = \pm 1$).

$$e_2, ..., e_n$$
.

Main Theorem

a unimodular matrix $B = \{b_1, b_2, \dots, b_n\}$ such that $b_n = v$ and $||v||^2 > ||b_i||^2, \forall i \in [n-1].$

Main Theorem

Let $v \in \mathbb{Z}^n$ be a primitive vector such that $||v||^2 > 1$. Then, there exists

Proof of Main Theorem

Proof of Main Theorem

• Case 1: n = 2
- Case 1: n = 2

• v = [a, b]. Consider $b_1 = [-d, c]$ such that $c \cdot a + b \cdot d = 1$.

- Case 1: n = 2

 - $B = [b_1, v]$ is unimodular.

• v = [a, b]. Consider $b_1 = [-d, c]$ such that $c \cdot a + b \cdot d = 1$.

- Case 1: n = 2

 - $B = [b_1, v]$ is unimodular.
 - We can find c, d such that |c| < |b|, |d| < |a|.

• v = [a, b]. Consider $b_1 = [-d, c]$ such that $c \cdot a + b \cdot d = 1$.

• Case 2: v has at least one component as 0.

• Case 2: v has at least one component as 0.

• WLOG, let $v_n = 0$

• Case 2: v has at least one component as 0.

• WLOG, let $v_n = 0$

• Consider $b'_n = [v_1, v_2, ..., v_{n-1}]$

- Case 2: v has at least one component as 0.
 - WLOG, let $v_n = 0$
 - Consider $b'_n = [v_1, v_2, ..., v_{n-1}]$
 - $||b'_i||^2 < ||b'_n||^2 = ||v||^2, \ 2 \le i \le n-1.$

• From induction hypothesis, there exists $B' = [b'_2, \dots, b'_n]$ such that

- Case 2: v has at least one component as 0.
 - WLOG, let $v_n = 0$
 - Consider $b'_n = [v_1, v_2, ..., v_{n-1}]$
 - $||b'_i||^2 < ||b'_n||^2 = ||v||^2, \ 2 \le i \le n-1.$

$$B = \begin{bmatrix} 0 & B' \\ 1 & 0 \end{bmatrix}$$

• From induction hypothesis, there exists $B' = [b'_2, \dots, b'_n]$ such that

• Case 3: v has at least one component as 1.

- Case 3: v has at least one component as 1.
 - WLOG, let $v_n = 1$

- Case 3: v has at least one component as 1.
 - WLOG, let $v_n = 1$
 - $B = [e_1, ..., e_{n-1}, v]$

• $v = [v_n, v_{n-1}, ..., v_1]$ and $d_i = gcd(v_1, v_2, ..., v_i)$

- $v = [v_n, v_{n-1}, ..., v_1]$ and $d_i = gcd(v_1, v_2, ..., v_i)$
- Let $r_i, s_i \in \mathbb{Z}$ such that $r_iv_i + s_id_{i-1} = d_i$.

- $v = [v_n, v_{n-1}, ..., v_1]$ and $d_i = gcd(v_1, v_2, ..., v_i)$
- Let $r_i, s_i \in \mathbb{Z}$ such that $r_i v_i + s_i d_{i-1} = d_i$.

Let
$$T_2 = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & r_2 \\ 0 & 0 & \dots & -d_1 \end{bmatrix}$$

0 0 where $d_1 = v_1$. $\begin{array}{c} s_2 \\ s_3 \\ s_4 \\ s_5 \\$

- $v = [v_n, v_{n-1}, ..., v_1]$ and $d_i = gcd(v_1, v_2, ..., v_i)$
- Let $r_i, s_i \in \mathbb{Z}$ such that $r_iv_i + s_id_{i-1} = d_i$.

Let
$$T_2 = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & r_2 \\ 0 & 0 & \dots & -d_1 \end{bmatrix}$$

• $T_2 v = [v_n, v_{n-1}, \dots, d_2, 0]^T$

0
0 where $d_1 = v_1$. *s*₂ $/d_2 v_2/d_2$

• Case 4: $v_i \notin \{-1,0,1\}$.

- Case 4: $v_i \notin \{-1, 0, 1\}$.
 - Similarly, we can construct T_i using v_i, s_i, d_i, d_{i-1} such that $T_n T_{n-1} \dots T_2 v = e_1.$

- Case 4: $v_i \notin \{-1, 0, 1\}$.
 - Similarly, we can construct T_i using v_i, s_i, d_i, d_{i-1} such that $T_n T_{n-1} \dots T_2 v = e_1.$

•
$$v = T_2^{-1} \dots, T_{n-1}^{-1} T_n^{-1} e_1$$

• Case 4: $v_i \notin \{-1, 0, 1\}$.

 \mathcal{V}_1

 $B = T_2^{-1} \dots, T_{n-1}^{-1} T_n^{-1} = \begin{bmatrix} v_n & -s_n & 0 & \dots & 0 & 0 \\ v_{n-1} & \frac{v_{n-1}r_n}{d_{n-1}} & -s_{n-1} & \dots & 0 & 0 \\ v_{n-2} & \frac{v_{n-2}r_n}{d_{n-1}} & \frac{v_{n-2}r_{n-1}}{d_{n-2}} & \dots & 0 & 0 \\ \vdots & & & & \end{bmatrix}$

 $v_2 \quad \frac{v_2 r_n}{d_{n-1}} \quad \frac{v_2 r_{n-1}}{d_{n-2}} \quad \dots \quad \frac{v_2 r_3}{d_2}$ $v_1 r_{n-1}$ $v_1 r_n$ $v_1 r_3$ $\overline{d_{n-}}$

Successive Minima from Voronoi Relevant Vectors

Main theorem

Main theorem

lattice \mathscr{L} such that $||s_i|| = \lambda_i(\mathscr{L})$, then S is a subset of the set of Voronoi relevant vectors $V(\mathscr{L})$ of \mathscr{L} .

Let $S = \{s_1, \ldots, s_n\}$ be a set of linearly independent lattice vector in a

Main theorem

lattice \mathscr{L} such that $||s_i|| = \lambda_i(\mathscr{L})$, then S is a subset of the set of Voronoi relevant vectors $V(\mathscr{L})$ of \mathscr{L} .

 $||S_i|| = \lambda_i(\mathscr{L}(B)).$

Let $S = \{s_1, \ldots, s_n\}$ be a set of linearly independent lattice vector in a

Given a basis $B = \{b_1, \dots, b_n\}$, the Successive Minima Problem (SMP) ask for *n* linearly independent vectors $\{s_1, \ldots, s_n\} \subseteq \mathscr{L}(B)$ such that

Corollaries

Corollaries

1) For any lattice \mathscr{L}

 $\lambda_n(\mathscr{L}) \le ||V(\mathscr{L})|| \le \frac{n^{3/2}}{2} \lambda_n(\mathscr{L})$

Corollaries

1) For any lattice \mathscr{L}

$\lambda_n(\mathscr{L}) \leq || V(.$

a solution to SMP without using CVP oracles.

$$\mathcal{L})|| \leq \frac{n^{3/2}}{2} \lambda_n(\mathcal{L})$$

2) We can modify the algorithm given by Micciancio and Voulgaris to find

Conclusion

Conclusion

and vectors.

• We looked into the definition of lattice, lattice problems and Voronoi cell

Conclusion

- and vectors.
- that the rest of the basis vectors are strictly shorter than v.

We looked into the definition of lattice, lattice problems and Voronoi cell

• We showed how to construct a basis for \mathbb{Z}^n from a primitive vector v such
Conclusion

- We looked into the definition of lattice, lattice problems and Voronoi cell and vectors.
- We showed how to construct a basis for \mathbb{Z}^n from a primitive vector v such that the rest of the basis vectors are strictly shorter than v.
- Discussed that a solution to SMP is contained in the set of Voronoi relevant vectors.

Conclusion

- We looked into the definition of lattice, lattice problems and Voronoi cell and vectors.
- We showed how to construct a basis for \mathbb{Z}^n from a primitive vector v such that the rest of the basis vectors are strictly shorter than v.
- Discussed that a solution to SMP is contained in the set of Voronoi relevant vectors.
- \mathbb{Z}^n such that every b_i 's are strictly shorter than the longest v_i .

• Is it possible to extend v_1, v_2, \dots, v_k to a basis $[v_1, \dots, v_k, b_{k+1}, \dots, b_n]$ of

Thank You !

• v is a Voronoi relevant vector of \mathscr{L} < $v + 2\mathscr{L}$

• v is a Voronoi relevant vector of $\mathscr{L} \iff \pm v$ are the only shortest vectors in

- v is a Voronoi relevant vector of \mathscr{L} < $v + 2\mathscr{L}$
- This implies that if v is not Voronoi re $||v/2 w|| \le ||v/2||$

• v is a Voronoi relevant vector of $\mathscr{L} \iff \pm v$ are the only shortest vectors in

• This implies that if v is not Voronoi relevant, then $\exists w \in \mathscr{L} \setminus \{0, v\}$ such that

- $v + 2\mathscr{L}$
- $|v/2 w| \le |v/2|$

• v is a Voronoi relevant vector of $\mathscr{L} \iff \pm v$ are the only shortest vectors in

• This implies that if v is not Voronoi relevant, then $\exists w \in \mathscr{L} \setminus \{0, v\}$ such that

• Let us first show that all shortest vector belongs to $V(\mathscr{L})$. Assume the contrary.

- $v + 2\mathscr{L}$
- $|v/2 w| \le |v/2|$
- - $||s/2 w|| < ||s/2|| \implies ||s 2w|| < ||s||$

• v is a Voronoi relevant vector of $\mathscr{L} \iff \pm v$ are the only shortest vectors in

• This implies that if v is not Voronoi relevant, then $\exists w \in \mathscr{L} \setminus \{0, v\}$ such that

• Let us first show that all shortest vector belongs to $V(\mathscr{L})$. Assume the contrary.

- v is a Voronoi relevant vector of $\mathscr{L}\iff \pm v$ are the only shortest vectors in $v+2\mathscr{L}$
- This implies that if v is not Voronoi relevant, then $\exists w \in \mathscr{L} \setminus \{0, v\}$ such that $||v/2 w|| \le ||v/2||$
- Let us first show that all shortest vector belongs to $V(\mathscr{L})$. Assume the contrary.
 - $||s/2 w|| < ||s/2|| \implies ||s 2w|| < ||s||$
 - $||s/2 w|| = ||s/2|| \implies cos(\theta) = ||w||/||s||$. Since, $||w|| \ge ||s|| \implies cos(\theta) \ge 1$. But, this implies w = s.

• Assume that $s_1, \ldots, s_{i-1} \in V(\mathscr{L})$ and $s_i \notin V(\mathscr{L})$ for some *i*.

- Assume that $s_1, \ldots, s_{i-1} \in V(\mathscr{L})$ and $s_i \notin V(\mathscr{L})$ for some *i*.
 - $||s_i 2w|| < ||s_i||$: We can show that $s_i 2w \in Span(s_1, ..., s_{i-1})$. $||w|| = ||w - s_i/2 + s_i/2|| < ||s_i|| \implies w \in Span(s_1, ..., s_{i-1})$. But, this implies that $s_i \in Span(s_1, ..., s_{i-1})$.

- Assume that $s_1, \ldots, s_{i-1} \in V(\mathscr{L})$ and $s_i \notin V(\mathscr{L})$ for some *i*.
 - $||s_i 2w|| < ||s_i||$: We can show that $s_i 2w \in Span(s_1, ..., s_{i-1})$. $||w|| = ||w - s_i/2 + s_i/2|| < ||s_i|| \implies w \in Span(s_1, ..., s_{i-1})$. But, this implies that $s_i \in Span(s_1, ..., s_{i-1})$.

•
$$||s_i - 2w|| = ||s_i||$$
:
 $||w||^2 = \langle s_i, w \rangle \Longrightarrow cos$
 $||s_i|| > ||w|| \text{ and } w \in Spa$
 $||s_i - w||^2 = ||s_i||^2 - ||w|$
 $s_i - w \in Span(s_1, ..., s_{i-1}) =$

 $s(\theta) = ||w||/||s_i|| \cdot \theta \neq 0, \text{ therefore}$ $un(s_1, \dots, s_{i-1}). \text{ Also,}$ $||^2 < ||s_i||^2. \text{ Therefore,}$ $\Rightarrow s_i \in Span(s_1, \dots, s_{i-1}).$

Thanks again!