PMRF Symposium 2022 Cryptanalysis of KECCAK & Algorithms for Lattice problems

Mahesh Sreekumar Rajasree Guided by: Prof. Manindra Agrawal & Prof. Shashank K Mehta

Department of Computer Science Indian Institute of Technology Kanpur

KECCAK

Hash function Structure of KECCAK

\mathbb{Z}^{n} -isomorphism Lattices \mathbb{Z}^{n} -isomorphism Results

KECCAK

Thank you for downloading Ubuntu Desktop

Your download should start automatically. If it doesn't, download now.

You can verify your download, or get help on installing.

Figure: Snapshot of Ubuntu download page

Run this command in your terminal in the directory the iso was downloaded to verify the SHA256 checksum:

echo "5fdebc435ded46ae99136ca875afc6f05bde217be7dd018e1841924f7 1db46b5 *ubuntu-20.04.3-desktop-amd64.iso" | shasum -a 256 --check

You should get the following output:

ubuntu-20.04.3-desktop-amd64.iso: OK

Figure: Snapshot of Ubuntu download page

• Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.

- Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.
- Practical applications include message integrity checks, digital signatures, authentication, etc.

- Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.
- Practical applications include message integrity checks, digital signatures, authentication, etc.
- ▶ SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST which is based on KECCAK.

• **Preimage attack:** Given H(m)

• Preimage attack: Given H(m), find any m' such that H(m') = H(m).

- Preimage attack: Given H(m), find any m' such that H(m') = H(m).
- Collision attack: Find any $m \neq m'$

- Preimage attack: Given H(m), find any m' such that H(m') = H(m).
- Collision attack: Find any $m \neq m'$, such that H(m) = H(m').

KECCAK: Sponge Construction

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

KECCAK: Sponge Construction

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf pad: padding function (10*1) f: KECCAK-f permutation

Figure: State

Description of θ

 $S'[x,y,z] = S[x,y,z] \oplus P[(x+1) \mod 5][(z-1) \mod 64] \oplus P[(x-1) \mod 5][z]$ where $P[x][z] = \bigoplus_{i=0}^4 S[x,i,z]$

Source: https://keccak.team/figures.html

Description of ρ

Figure: ρ

Source: https://keccak.team/figures.html

Description of π

Figure: π

 $Source:\ https://keccak.team/figures.html$

• χ : Only non-linear function

Description of χ and ι

• χ : Only non-linear function

$$S'[x, y, z] = S[x, y, z] \oplus ((S[(x+1) \mod 5, y, z] \oplus 1) \cdot S[(x+2) \mod 5, y, z])$$

Description of χ and ι

• χ : Only non-linear function

$$S'[x, y, z] = S[x, y, z] \oplus ((S[(x+1) \mod 5, y, z] \oplus 1) \cdot S[(x+2) \mod 5, y, z])$$

ι:

$$S'[0,0] = S[0,0] \oplus RC_i$$

where RC_i is a constant which depends on i where i is the round number.

Description of χ and ι

• χ : Only non-linear function

$$S'[x, y, z] = S[x, y, z] \oplus ((S[(x+1) \mod 5, y, z] \oplus 1) \cdot S[(x+2) \mod 5, y, z])$$

▶ ι:

$$S'[0,0] = S[0,0] \oplus RC_i$$

where RC_i is a constant which depends on i where i is the round number.

$$f = \underbrace{(\iota \circ \chi \circ \pi \circ \rho \circ \theta) \circ (\iota \circ \chi \circ \pi \circ \rho \circ \theta) \circ \cdots}_{r}$$

Studied non-linear structure on KECCAK hash family and gave better preimage attacks.

Studied non-linear structure on KECCAK hash family and gave better preimage attacks.

Rounds	Instances	Our Results	Previous Results
9	384	2^{113}	$2^{129}[1]$
2	512	2^{321}	$2^{384}[1]$
ŋ	384	2^{321}	$2^{322}[1]$
9	512	2^{475}	$2^{482}[1]$
4	384	2^{371}	$2^{378}[2]$

Table: Summary of preimage attacks

$\mathbb{Z}^n\text{-}\mathrm{isomorphism}$

 Most of the widely used cryptosystems like RSA, Diffie-Hellman and Elliptic Curve cryptosystem are based on integer factorization or discrete logarithm problem

- Most of the widely used cryptosystems like RSA, Diffie-Hellman and Elliptic Curve cryptosystem are based on integer factorization or discrete logarithm problem
- ▶ These systems are vulnerable to quantum attacks that use the Shor's algorithm, which efficiently solves the above problems.

- Most of the widely used cryptosystems like RSA, Diffie-Hellman and Elliptic Curve cryptosystem are based on integer factorization or discrete logarithm problem
- ▶ These systems are vulnerable to quantum attacks that use the Shor's algorithm, which efficiently solves the above problems.
- Lattice based cryptosystems are one of the candidates for post-quantum cryptosystem. The security of such systems are based on the hardness of Shortest Vector Problem (SVP) and Closest Vector Problem (CVP).

Let $B = [b_1, \ldots, b_n]$ is a set of linearly independent vectors. A **lattice** $\mathcal{L}(B)$ is the set of all integer linear combinations of the vectors in B, i.e.,

$$\mathcal{L}(B) = \{Bz | \forall z \in \mathbb{Z}^n\}$$

Lattice

 \mathbb{Z}^2 lattice

Let $B = [b_1, \ldots, b_n]$ is a set of linearly independent vectors. A **lattice** $\mathcal{L}(B)$ is the set of all integer linear combinations of the vectors in B, i.e.,

$$\mathcal{L}(B) = \{Bz | \forall z \in \mathbb{Z}^n\}$$

Shortest Vector Problem (SVP):- Given a lattice $\mathcal{L}(B)$, find a non-zero shortest vector v in $\mathcal{L}(B)$, i.e., $||v|| \leq ||w||, \forall w \in \mathcal{L}(B) \setminus \{0\}.$

21

Algorithm	Time	Space	Deterministic/Randomized
Enumeration [3]	$n^{O(n)}$	poly(n)	Deterministic
AKS $[2]$	$2^{O(n)}$	$2^{O(n)}$	Randomized
Voronoi based [1]	$\tilde{O}(2^{2n})$	$\tilde{O}(2^n)$	Deterministic
Gaussian Sampling [3]	$2^{n+o(n)}$	$2^{n+o(n)}$	Randomized

Table: Summary of SVP algorithms

Given a lattice \mathcal{L} , decide whether \mathcal{L} is isomorphic to \mathbb{Z}^n .

Given a lattice \mathcal{L} , decide whether \mathcal{L} is isomorphic to \mathbb{Z}^n . In other words, given a basis B, decide whether there exists an orthonormal matrix O and a unimodular matrix U such that

$$OB = U$$

Note: Any basis of \mathbb{Z}^n is a unimodular matrix and vice-versa.

▶ \mathbb{Z}^n -isomorphism is known to be in NP∩Co-NP.

- ▶ \mathbb{Z}^n -isomorphism is known to be in NP∩Co-NP.
- ▶ \mathbb{Z}^n -isomorphism can be solved using an SVP algorithm but it takes exponential time.

Given a primitive vector $v \in \mathbb{Z}^n$ such that ||v|| > 1,

Given a primitive vector $v \in \mathbb{Z}^n$ such that ||v|| > 1, there exists b_2, \ldots, b_n such that

Given a primitive vector $v \in \mathbb{Z}^n$ such that ||v|| > 1, there exists b_2, \ldots, b_n such that

1. $[v, b_2, \ldots, b_n]$ is a basis of \mathbb{Z}^n .

Given a primitive vector $v \in \mathbb{Z}^n$ such that ||v|| > 1, there exists b_2, \ldots, b_n such that

- 1. $[v, b_2, \ldots, b_n]$ is a basis of \mathbb{Z}^n .
- 2. $||b_i|| < ||v||, \forall i \in \{2, \dots, n\}.$

Given a primitive vector $v \in \mathbb{Z}^n$ such that ||v|| > 1, there exists b_2, \ldots, b_n such that

1.
$$[v, b_2, \ldots, b_n]$$
 is a basis of \mathbb{Z}^n .

2.
$$||b_i|| < ||v||, \forall i \in \{2, \dots, n\}.$$

The proof of this theorem uses concepts from number theory.

Given a primitive vector $v_1, \ldots, v_k \in \mathbb{Z}^n$ such that 1. $||v_1|| \ge ||v_2|| \ge \cdots \ge ||v_{k+1}|| > 1$

- 1. $||v_1|| \ge ||v_2|| \ge \cdots \ge ||v_{k+1}|| > 1$
- 2. there exists v_{k+1}, \ldots, v_n such that $[v_1, v_2, \ldots, v_n]$ is a basis of \mathbb{Z}^n

- 1. $||v_1|| \ge ||v_2|| \ge \dots \ge ||v_{k+1}|| > 1$
- 2. there exists v_{k+1}, \ldots, v_n such that $[v_1, v_2, \ldots, v_n]$ is a basis of \mathbb{Z}^n

there exists b_{k+1}, \ldots, b_n such that

- 1. $||v_1|| \ge ||v_2|| \ge \cdots \ge ||v_{k+1}|| > 1$
- 2. there exists v_{k+1}, \ldots, v_n such that $[v_1, v_2, \ldots, v_n]$ is a basis of \mathbb{Z}^n

there exists b_{k+1}, \ldots, b_n such that

1.
$$[v_1, \ldots, v_k, b_{k+1}, \ldots, b_n]$$
 is a basis of \mathbb{Z}^n .

- 1. $||v_1|| \ge ||v_2|| \ge \dots \ge ||v_{k+1}|| > 1$
- 2. there exists v_{k+1}, \ldots, v_n such that $[v_1, v_2, \ldots, v_n]$ is a basis of \mathbb{Z}^n

there exists b_{k+1}, \ldots, b_n such that

- 1. $[v_1, \ldots, v_k, b_{k+1}, \ldots, b_n]$ is a basis of \mathbb{Z}^n .
- 2. $||b_i|| < ||v_1||, \forall i \in \{k+1, \dots, n\}.$

THANK YOU!

Rajasree M.S. (2019) Cryptanalysis of Round-Reduced KECCAK Using Non-linear Structures. In: Hao F., Ruj S., Sen Gupta S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science, vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_9

- Guo, J., Liu, M. and Song, L., 2016, December. Linear structures: Applications to cryptanalysis of round-reduced Keccak. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 249-274). Springer, Berlin, Heidelberg.
- Morawiecki, P., Pieprzyk, J. and Srebrny, M., 2013, March. Rotational cryptanalysis of round-reduced Keccak. In International Workshop on Fast Software Encryption (pp. 241-262). Springer, Berlin, Heidelberg.
- Kannan, R., 1987. Minkowski's convex body theorem and integer programming. Mathematics of operations research, 12(3), pp.415-440.

References

- Micciancio, D. and Voulgaris, P., 2013. A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. SIAM Journal on Computing, 42(3), pp.1364-1391.
- Ajtai, M., Kumar, R. and Sivakumar, D., 2001, July. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the thirty-third annual ACM symposium on Theory of computing (pp. 601-610).
 - Aggarwal, D., Dadush, D., Regev, O. and Stephens-Davidowitz, N., 2015, June. Solving the shortest vector problem in 2n time using discrete Gaussian sampling. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing (pp. 733-742).