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Figure: Snapshot of Ubuntu download page
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Introduction 6

I Cryptographic hash functions are hash functions which
are resistant to preimage, collision attacks and other
attacks.

I Practical applications include message integrity checks,
digital signatures, authentication, etc.

I SHA-3 (Secure Hash Algorithm 3) is the latest
member of the Secure Hash Algorithm family of standards,
released by NIST which is based on KECCAK.
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Attacks 7

Let H be a cryptographic hash function.

I Preimage attack: Given H(m) , find any m′ such that
H(m′) = H(m).

I Collision attack: Find any m 6= m′ , such that
H(m) = H(m′).
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KECCAK: Sponge Construction 8

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

pad: padding function (10*1)
f: KECCAK-f permutation
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KECCAK: State 9

Figure: State

Source: https://keccak.team/figures.html



Description of θ 10

S′[x, y, z] = S[x, y, z]⊕P [(x+1) mod 5][(z−1) mod 64]⊕P [(x−1) mod 5][z]
where P [x][z] =

⊕4
i=0 S[x, i, z]

Figure: θ

Source: https://keccak.team/figures.html



Description of ρ 11

Figure: ρ

Source: https://keccak.team/figures.html
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Figure: π

Source: https://keccak.team/figures.html



Description of χ and ι 13

I χ: Only non-linear function

S′[x, y, z] = S[x, y, z]⊕ ((S[(x+ 1) mod 5, y, z]⊕ 1)·
S[(x+ 2) mod 5, y, z])

I ι:
S′[0, 0] = S[0, 0]⊕RCi

where RCi is a constant which depends on i where i is the
round number.

f = (ι ◦ χ ◦ π ◦ ρ ◦ θ) ◦ (ι ◦ χ ◦ π ◦ ρ ◦ θ) ◦ · · ·︸ ︷︷ ︸
r
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Preimage attacks using non-linear structures 14

Studied non-linear structure on KECCAK hash family and gave
better preimage attacks.

Rounds Instances Our Results Previous Results

2
384 2113 2129[1]

512 2321 2384[1]

3
384 2321 2322[1]

512 2475 2482[1]

4 384 2371 2378[2]

Table: Summary of preimage attacks
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Introduction 16

I Most of the widely used cryptosystems like RSA,
Diffie-Hellman and Elliptic Curve cryptosystem are based
on integer factorization or discrete logarithm problem

I These systems are vulnerable to quantum attacks that use
the Shor’s algorithm, which efficiently solves the above
problems.

I Lattice based cryptosystems are one of the candidates for
post-quantum cryptosystem. The security of such systems
are based on the hardness of Shortest Vector Problem
(SVP) and Closest Vector Problem (CVP).
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Lattice 17

Let B = [b1, . . . , bn] is a set of linearly independent vectors. A
lattice L(B) is the set of all integer linear combinations of the
vectors in B, i.e.,

L(B) = {Bz|∀z ∈ Zn}



Lattice 18

(0,0) (1,0)

(0,1)



Z2 lattice 19

(0,0)

(1,1) (2,1)



Lattice 20

Let B = [b1, . . . , bn] is a set of linearly independent vectors. A
lattice L(B) is the set of all integer linear combinations of the
vectors in B, i.e.,

L(B) = {Bz|∀z ∈ Zn}

Shortest Vector Problem (SVP):- Given a lattice L(B),
find a non-zero shortest vector v in L(B), i.e.,
||v|| ≤ ||w||, ∀w ∈ L(B) \ {0}.
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(0,0)
(1,0)(-1,0)

(0,1)

(0,-1)



Algorithm for SVP 22

Algorithm Time Space Deterministic/Randomized

Enumeration [3] nO(n) poly(n) Deterministic

AKS [2] 2O(n) 2O(n) Randomized

Voronoi based [1] Õ(22n) Õ(2n) Deterministic

Gaussian Sampling [3] 2n+o(n) 2n+o(n) Randomized

Table: Summary of SVP algorithms



Zn-isomorphism 23

Given a lattice L, decide whether L is isomorphic to Zn.

In other words, given a basis B, decide whether there exists an
orthonormal matrix O and a unimodular matrix U such that

OB = U

Note: Any basis of Zn is a unimodular matrix and vice-versa.
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(0,0)



Zn-isomorphism 25

I Zn-isomorphism is known to be in NP∩Co-NP.

I Zn-isomorphism can be solved using an SVP algorithm but
it takes exponential time.
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Results 26

Given a primitive vector v ∈ Zn such that ||v|| > 1,

there exists
b2, . . . , bn such that

1. [v, b2, . . . , bn] is a basis of Zn.

2. ||bi|| < ||v||,∀i ∈ {2, . . . , n}.
The proof of this theorem uses concepts from number theory.
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Conjecture 27

Given a primitive vector v1, . . . , vk ∈ Zn such that

1. ||v1|| ≥ ||v2|| ≥ · · · ≥ ||vk+1|| > 1

2. there exists vk+1, . . . , vn such that [v1, v2, . . . , vn] is a basis
of Zn

there exists bk+1, . . . , bn such that

1. [v1, . . . , vk, bk+1, . . . , bn] is a basis of Zn.

2. ||bi|| < ||v1||,∀i ∈ {k + 1, . . . , n}.
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