Non-Committing Identity Based Encryption: **Constructions and Applications** Mahesh Sreekumar Rajasree **CISPA Helmholtz PKC 2025**

Joint work with Rishab Goyal (UW-Madison), Fuyuki Kitagawa (NTT Japan), Venkata Koppula (IITD), Ryo Nishimaki (NTT Japan) and Takashi Yamakawa (NTT Japan)

Challenger

 $(sk, pk) \leftarrow Setup()$

Adversary wins if b = b'

Incompressible Cryptography [Dziembowski'06,Guan-Wichs-Zhandry'22]

- Security is lost if adversary has entire ciphertext and entire secret key due to correctness.
- Dziembowski'06 and Guan-Wichs-Zhandry'22 proposed incompressible security model
 - Make ciphertext large so that long-term storage is expensive.
 - Adversary gets a challenge ciphertext ct^* for m_0, m_1 and then it has to compress/reduce its storage which contains ct^* .
 - After which it receives *sk*, but still should not be able to distinguish.

Adversaries win if b = b'

Prior works

Dziembowski'06	Introduce
Guan-Wichs-Zhandry'22	Extended the notion
ranco-Döttling-Dujmovic'23	Constructed CCA-
Guan-Wichs-Zhandry'23	Extended the
Bhushan-Goyal-Koppula- Narayanan-Prabhakaran- Rajasree'24	Ex
Goyal-Koppula-Rajasree- Verma'25	E

ed and constructed the first Incompressible SKE.

on to Incompressible PKE and provided constructions from regulars PKE (poor rate) and iO (rate-1).

-Incompressible PKE (rate-1) from standard assumptions.

he notion to Multi-user Incompressible PKE setting.

Extended the notion to leakage-resilience.

Extended the notion to FE, ABE and **IBE**

Incompressible PKE from NCE

Incompressible PKE

Non-Commiting Encryption

Incompressible SKE

Can be build from OWF

 $m \leftarrow Dec(sk, ct)$

 $ct \leftarrow Enc(pk, m)$

ct is committed to *m*

 $m \leftarrow Dec(sk, ct)$

Generate fake *sk*

Incompressible Cryptography

Certified Deletion

Receiver NCE Syntax

Security

 $\{pk, sk, ct_m\} \approx_c \{pk^*, sk^*, ct^*\}$

Real

Simulated

Identity Based Encryption

- Generalisation of PKE.
- n users in the system each with a distinct identity. Secret keys are associated with identity *id*
- To encrypt a message *m*, a master public key *mpk* is used along with *id*.
 - Adversary gets a challenge ciphertext ct^* for m_0, m_1 encrypted under the identity id^* and then it has to distinguish it.
 - Also obtains multiple sk_{id} where $id \neq id^*$.

(RNC)-IBE Syntax

Enc(mpk, id, m) \rightarrow Ciphertext *ct* KeyGen(msk, id) \rightarrow Secret key sk_{id} $Dec(sk_{id},ct) \rightarrow m$

 $Sim_2(id) \rightarrow$ Fake secret key sk_{id} $Sim_3(id^*, m) \rightarrow$ Fake master secret key *msk**

Canetti-Feige-Goldreich- Naor'96	Introduced NC
Bea'97,DN'00,CDMW'09,HOR '15,HORR'15,CPR17,YKT'19	C
Brakerski-Branco-Döttling- Garg-Malavolta'20 Yoshida-Kitagawa-Xagawa- Tanaka'20	
Hiroka-Morimae-Nishimaki- Yamakawa'21	Introduced identity

Reveals randomness used during setup and encryption algorithm.

CE to design adaptively secure multiparty computation protocols.

Constructions from various assumptions.

Rate-1 NCE

y based non-committing encryption to build certified IBE with certified deletion.

Adversary wins if b = b'

Can we build RNC-IBE from standard assumptions*?

Prior work used indistinguishable obfuscation.

- Rate-1 RNC-IBE from bilinear pairings.
 - Rate-1 strong incompressible IBE from bilinear pairings and LWE (or DCR)
- RNC-IBE for polynomially bounded identity space from DDH, LWE.

Our Results

Incompressible SKE

Incompressible IBE

Bilinear Pairings

 $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where \mathbb{G}_i is a prime order group

 $e(g_1^a, g_2^b)$

 $g_1, g_2, e(g_1, g_2)$ are generators of $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$

$$e(g_1, g_2)^{ab}$$

 $[a]_b$ denotes g_b^a

Construction

 $pp = ([a]_1, [b]_2, [W_1a]_1, [W_2a]_1, [W_1^Tb]_2, [W_2^Tb]_2) \text{ where } a, b \leftarrow \mathbb{Z}_p^2, W_i \leftarrow \mathbb{Z}_p^{2 \times 2}$

 $Setup \to MSI$ MP

e (

 $[ra]_1$

$$KeyGen(id) \rightarrow ([sb]_2 , [k+s(W_1+id \cdot W_2)^Tb]_2)$$

 $Enc(MPK, id, m \in \mathbb{G}_T) \rightarrow ([ra]_1),$

$$Dec(sk_{id}, ct) \rightarrow [ra^Tk]_T \cdot m \times e$$

$$K = \begin{pmatrix} k \leftarrow \mathbb{Z}_p^2 \end{pmatrix}$$
$$K = \begin{pmatrix} [a^T k]_T \end{pmatrix}$$

 $[r(W_1 + id \cdot W_2)a]_1$

 $[k + s(W_1 + id \cdot W_2)^T b]_2$

$$Sim_1(id^*) \to MPK = ([k_1]_T)$$
$$ct = ([u]_1),$$

$$Sim_2(id) \to ([sb]_2, [sb]_2, [\frac{k_1a}{|a|^2} + s(W_1 + id \cdot W_2)^T b + wa^T]_2$$

 $Sim_3(m) \rightarrow Set k_2 = -k_2$

MSK

 k_2 is not used anywhere

$$\frac{\frac{r}{m} - u_1 k_1}{u_2} \text{ where } u = u_1 a + u_2 a^{\mathsf{T}}$$
$$= \left(k = \frac{k_1}{|a|^2} a + \frac{k_2}{|a^{\mathsf{T}}|^2} a^{\mathsf{T}} \right)$$

$Setup \rightarrow MPK = (RNCIBE.MPK)$ MSK = (RNCIBE.MSK)

Incomp IBE from RNC-IBE

- 1. RNC-IBE
- 2. Incompressible SKE scheme

- 1. RNC-IBE from LWE and other assumptions.
- 2. Full NC-IBE from standard assumptions.
- 3. Rate-1 RNC-ABE from bilinear pairings.
- 4. Strong incompressible IBE and ABE from other standard assumptions.

Future Directions

Thank You

https://mahe94.github.io