
Incompressible Cryptography
beyond

Public Key Encryption

Mahesh Sreekumar Rajasree

IIT Delhi 

 
 

Ongoing work with Rishab Goyal, Venkata Koppula, Aman Verma

SECRET KEY ENCRYPTION (SKE)

SECRET KEY ENCRYPTION (SKE)

Alice wants to send a message to Bob
s.t. no eavesdropper can learn the message

SECRET KEY ENCRYPTION (SKE)

Alice wants to send a message to Bob
s.t. no eavesdropper can learn the message

m

Encrypt m using key k

SECRET KEY ENCRYPTION (SKE)

Alice wants to send a message to Bob
s.t. no eavesdropper can learn the message

m

Encrypt m using key k

m

??

SECRET KEY ENCRYPTION (SKE)

Alice wants to send a message to Bob
s.t. no eavesdropper can learn the message

m

Encrypt m using key k

m

??

Decrypt using key k

FUNCTIONAL ENCRYPTION (FE)

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

f1

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

f1 f2

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

f1 f2 f3

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

FUNCTIONAL ENCRYPTION (FE)

mpk
msk

SETUP

FUNCTIONAL ENCRYPTION (FE)

mpk
msk

SETUP

ENCmpk
msg 𝖼𝗍

FUNCTIONAL ENCRYPTION (FE)

mpk
msk

SETUP

𝗌𝗄𝖿KEYGENmsk
f

ENCmpk
msg 𝖼𝗍

FUNCTIONAL ENCRYPTION (FE)

mpk
msk

SETUP

𝗌𝗄𝖿KEYGENmsk
f

ENCmpk
msg 𝖼𝗍

DEC
𝗌𝗄𝖿

ct 𝗆𝗌𝗀/ ⊥

FUNCTIONAL ENCRYPTION (FE)

f1 f2 f3

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

FUNCTIONAL ENCRYPTION (FE)

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

mpk msk

FUNCTIONAL ENCRYPTION (FE)

m

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

mpk msk

FUNCTIONAL ENCRYPTION (FE)

m

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

mpk msk

𝗌𝗄f1

FUNCTIONAL ENCRYPTION (FE)

m

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

mpk msk

𝗌𝗄f1 𝗌𝗄f2

FUNCTIONAL ENCRYPTION (FE)

m

f1 f2 f3

Master
Authority

Alice wants to send m Parties learn only function of m

mpk msk

𝗌𝗄f1 𝗌𝗄f2 𝗌𝗄f3

FUNCTIONAL ENCRYPTION (FE)

m

Alice wants to send m Parties learn only function of m

f1 f2 f3
𝗌𝗄f1 𝗌𝗄f2 𝗌𝗄f3

Learns only
f1(m) and f2(m)

ATTRIBUTE-BASED ENCRYPTION (ABE)

ATTRIBUTE-BASED ENCRYPTION (ABE)

Example attribute:  

Student  

CSE Dept.  

Dean

ATTRIBUTE-BASED ENCRYPTION (ABE)

Example access policy:  

((Student AND CSE Dept) OR Dean)

Example attribute:  

Student  

CSE Dept.  

Dean

ATTRIBUTE-BASED ENCRYPTION (ABE)

Encrypt messages with ‘access policy’

Only users having attribute satisfying access policy  
should learn message

Example access policy:  

((Student AND CSE Dept) OR Dean)

Example attribute:  

Student  

CSE Dept.  

Dean

ATTRIBUTE-BASED ENCRYPTION (ABE)

x1 x2 x3

Alice wants to send m with policy f s.t. only parties whose attributes satisfy the policy can recover m

ATTRIBUTE-BASED ENCRYPTION (ABE)

x1 x2 x3

Alice wants to send m with policy f s.t. only parties whose attributes satisfy the policy can recover m

Master
Authority

mpk msk

ATTRIBUTE-BASED ENCRYPTION (ABE)

m; policy f

x1 x2 x3

Alice wants to send m with policy f s.t. only parties whose attributes satisfy the policy can recover m

Master
Authority

mpk msk

𝗌𝗄x1 𝗌𝗄x2 𝗌𝗄x3

PROGRESS IN ABE / FE

PROGRESS IN ABE / FE
ABE

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

- ABE for unbounded-depth circuits, succinct keys [Li, Lin, Luo 22]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

- ABE for unbounded-depth circuits, succinct keys [Li, Lin, Luo 22]

FE

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

- ABE for unbounded-depth circuits, succinct keys [Li, Lin, Luo 22]

FE
- FE for inner-products [Katz, Sahai, Waters 08]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

- ABE for unbounded-depth circuits, succinct keys [Li, Lin, Luo 22]

FE
- FE for inner-products [Katz, Sahai, Waters 08]

- FE for circuits, based on obfuscation
[Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]

PROGRESS IN ABE / FE
ABE

- ABE for formulas [Goyal, Pandey, Sahai, Waters 07]

- ABE for bounded-depth circuits [Gorbunov, Vaikuntanathan, Wee 12]

- ABE for bounded-depth circuits, succinct keys
[Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, Vinayagamurthy 13]

- ABE for unbounded-depth circuits, succinct keys [Li, Lin, Luo 22]

FE
- FE for inner-products [Katz, Sahai, Waters 08]

- FE for circuits, based on obfuscation
[Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]

- FE for circuits, based on bilinear maps + LWE
[Jain, Lin, Sahai 20]

KEY ISSUE - KEY MANAGEMENT ISSUE

“Cryptography is a tool for turning
lots of different problems into
key management problems”

KEY ISSUE - KEY MANAGEMENT ISSUE

“Cryptography is a tool for turning
lots of different problems into
key management problems”

What if decryption key is
compromised?

KEY ISSUE - KEY MANAGEMENT ISSUE

“Cryptography is a tool for turning
lots of different problems into
key management problems”

What if decryption key is
compromised?

KEY ISSUE - KEY MANAGEMENT ISSUE

“Cryptography is a tool for turning
lots of different problems into
key management problems”

What if decryption key is
compromised?

KEY ISSUE - KEY MANAGEMENT ISSUE

KEY ISSUE - KEY MANAGEMENT ISSUE
- BIG KEY CRYPTOGRAPHY: make key so large that it is difficult for

adversary to get the whole key
[Dziembowzki 06; Di Crescenzo, Lipton 06; Bellare, Kane, Rogaway 16]

KEY ISSUE - KEY MANAGEMENT ISSUE
- BIG KEY CRYPTOGRAPHY: make key so large that it is difficult for

adversary to get the whole key
[Dziembowzki 06; Di Crescenzo, Lipton 06; Bellare, Kane, Rogaway 16]

- FORWARD SECRECY VIA KEY UPDATES: key in epoch t cannot be
used to decrypt ciphertexts in earlier epochs
[Canetti, Halevi, Katz 03; Kitagawa, Kojima, Attrapadung, Imai 15]

KEY ISSUE - KEY MANAGEMENT ISSUE
- BIG KEY CRYPTOGRAPHY: make key so large that it is difficult for

adversary to get the whole key
[Dziembowzki 06; Di Crescenzo, Lipton 06; Bellare, Kane, Rogaway 16]

- FORWARD SECRECY VIA KEY UPDATES: key in epoch t cannot be
used to decrypt ciphertexts in earlier epochs
[Canetti, Halevi, Katz 03; Kitagawa, Kojima, Attrapadung, Imai 15]

- INCOMPRESSIBLE ENCRYPTION: this talk

INCOMPRESSIBLE ENCRYPTION

INCOMPRESSIBLE ENCRYPTION

Adi Shamir

I want that the secret of the Coco-Cola
company to be kept not in a tiny file of one

kilobyte, which can be exfiltrated easily by an
APT (Advanced Persistent Threat). I want that
file to be a terabyte, which cannot be [easily]

exfiltrated.

(RSA 2013 conference)

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

Encryption of Recipe

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

Encryption of Recipe

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

APT

Encryption of Recipe

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

APT

APT can transmit a few MBs to
adversary.

Encryption of Recipe

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

APT

APT can transmit a few MBs to
adversary.

- Can either try to learn recipe
from the ciphertext, and send
the recipe

Encryption of Recipe

INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

APT

APT can transmit a few MBs to
adversary.

- Can either try to learn recipe
from the ciphertext, and send
the recipe

- Can send a short summary of
the ciphertext. Later,
adversary learns key, and
uses this summary to learn
recipe.

INCOMPRESSIBLE ENCRYPTION : A BRIEF HISTORY

INCOMPRESSIBLE ENCRYPTION : A BRIEF HISTORY

- ALL-OR-NOTHING ENCRYPTION [Rivest 97]
Weak form of incompressible enc. for secret key enc.

INCOMPRESSIBLE ENCRYPTION : A BRIEF HISTORY

- ALL-OR-NOTHING ENCRYPTION [Rivest 97]
Weak form of incompressible enc. for secret key enc.

- FORWARD SECURE STORAGE [Dziembowski 06]

Incompressible Secret Key Encryption

INCOMPRESSIBLE ENCRYPTION : A BRIEF HISTORY

- ALL-OR-NOTHING ENCRYPTION [Rivest 97]
Weak form of incompressible enc. for secret key enc.

- FORWARD SECURE STORAGE [Dziembowski 06]

Incompressible Secret Key Encryption

- INCOMPRESSIBLE CRYPTOGRAPHY [Guan, Wichs, Zhandry 22]

Incompressible Public Key Encryption

- RATE-1 INCOMPRESSIBLE ENCRYPTION FROM STANDARD ASSUMPTIONS
[Branco, Dottling, Dujmovic 22]
Efficient incompressible PKE schemes from LWE/DDH

INCOMPRESSIBLE ENCRYPTION : OUR CONTRIBUTIONS

INCOMPRESSIBLE ENCRYPTION : OUR CONTRIBUTIONS

- DEFINE INCOMPRESSIBILITY FOR IBE/ABE/FE
Multiple definitions possible - does adversary learn a distinguishing
key, or the entire master secret key?

INCOMPRESSIBLE ENCRYPTION : OUR CONTRIBUTIONS

- DEFINE INCOMPRESSIBILITY FOR IBE/ABE/FE
Multiple definitions possible - does adversary learn a distinguishing
key, or the entire master secret key?

- CONSTRUCTIONS BASED ON MINIMAL ASSUMPTIONS

Incompressible SKE + IBE/ABE/FE —> Incompressible IBE/ABE/FE

INCOMPRESSIBLE ENCRYPTION : OUR CONTRIBUTIONS

- DEFINE INCOMPRESSIBILITY FOR IBE/ABE/FE
Multiple definitions possible - does adversary learn a distinguishing
key, or the entire master secret key?

- CONSTRUCTIONS BASED ON MINIMAL ASSUMPTIONS

Incompressible SKE + IBE/ABE/FE —> Incompressible IBE/ABE/FE

- OPTIMAL* RATE CONSTRUCTIONS FROM STANDARD ASSUMPTIONS

*Optimality lies in the eyes of the beholder.

PLAN FOR THE REMAINING TALK

• Security Definitions, and connections to other crypto primitives

PLAN FOR THE REMAINING TALK

• Security Definitions, and connections to other crypto primitives

• Incompressible SKE

PLAN FOR THE REMAINING TALK

• Security Definitions, and connections to other crypto primitives

• Incompressible SKE

• Our Incompressible PKE scheme

PLAN FOR THE REMAINING TALK

• Security Definitions, and connections to other crypto primitives

• Incompressible SKE

• Our Incompressible PKE scheme

• Conclusion and Open Questions

PLAN FOR THE REMAINING TALK

Security Definitions

INCOMPRESSIBLE ENCRYPTION

INCOMPRESSIBLE ENCRYPTION

Challenger Adversary

INCOMPRESSIBLE ENCRYPTION

Challenger Adversary
(sk, pk) ← Setup()

pk

INCOMPRESSIBLE ENCRYPTION

Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb) c

INCOMPRESSIBLE ENCRYPTION

Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb) c

state
|state | ≤ S

state

INCOMPRESSIBLE ENCRYPTION

Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb) c

state
|state | ≤ S

state
sk

b′

wins if b = b′

INCOMPRESSIBLE ENCRYPTION

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

- Eventually, gets the whole secret
key. Must use the compressed
ciphertext and key to recover
message

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

- Eventually, gets the whole secret
key. Must use the compressed
ciphertext and key to recover
message

Leakage Resilient Enc

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

- Eventually, gets the whole secret
key. Must use the compressed
ciphertext and key to recover
message

Leakage Resilient Enc
- Adversary initially has access to

whole secret key

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

- Eventually, gets the whole secret
key. Must use the compressed
ciphertext and key to recover
message

Leakage Resilient Enc
- Adversary initially has access to

whole secret key

- Must compress secret key

INCOMPRESSIBLE ENCRYPTION

Incompressible Enc
- Adversary initially has access to

whole ciphertext

- Must compress ciphertext

- Eventually, gets the whole secret
key. Must use the compressed
ciphertext and key to recover
message

Leakage Resilient Enc
- Adversary initially has access to

whole secret key

- Must compress secret key

- Eventually, gets the whole
ciphertext. Must use the
compressed key and ciphertext to
recover message

Challenger Adversary

LEAKAGE RESILIENT SECURITY

Challenger Adversary
(sk, pk) ← Setup()

pk

LEAKAGE RESILIENT SECURITY

Challenger Adversary
(sk, pk) ← Setup()

pk

f

f(sk)

| f(sk) | < S < |sk |

LEAKAGE RESILIENT SECURITY

Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb)

c

f

f(sk)

| f(sk) | < S < |sk |

LEAKAGE RESILIENT SECURITY

Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb)

c

b′ ∈ {0,1}

Adversary wins if b = b′

f

f(sk)

| f(sk) | < S < |sk |

LEAKAGE RESILIENT SECURITY

Incompressible SKE

ONE TIME PAD IS COMPRESSIBLE

•  
Enc(): .
sk ∈ {0,1}n

sk, m ct = m ⊕ sk

ONE TIME PAD IS COMPRESSIBLE

•  
Enc(): .
sk ∈ {0,1}n

sk, m ct = m ⊕ sk

• Consider and .  
After receiving , the adversary creates .

m0 = 0n m1 = 1n

c state = c[0]

ONE TIME PAD IS COMPRESSIBLE

•  
Enc(): .
sk ∈ {0,1}n

sk, m ct = m ⊕ sk

• Consider and .  
After receiving , the adversary creates .

m0 = 0n m1 = 1n

c state = c[0]

• Only receiving , the second adversary returns .sk b′ = state ⊕ sk[0]

ONE TIME PAD IS COMPRESSIBLE

FIXING ONE TIME PAD [DZIEMBOWSKI 06]

• Idea: use a ‘strong randomness extractor’

FIXING ONE TIME PAD [DZIEMBOWSKI 06]

• Idea: use a ‘strong randomness extractor’

• To encrypt a message , compute which will used in
OTP. Here, is a huge random string.

m sk′ = Ext(R; sk)
R

FIXING ONE TIME PAD [DZIEMBOWSKI 06]

• Idea: use a ‘strong randomness extractor’

• To encrypt a message , compute which will used in
OTP. Here, is a huge random string.

m sk′ = Ext(R; sk)
R

• Output .c = (R, m ⊕ sk′)

FIXING ONE TIME PAD [DZIEMBOWSKI 06]

Incompressible Security

24

Incompressible Security

24

Incompressible Security

Challenger Adversary 1

24

Incompressible Security

Challenger Adversary 1
m0, m1

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}
sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb)
sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state

sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2

sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ = Ext(R; sk)

24

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ = Ext(R; sk)

25

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ = Ext(R; sk)

|state | ≤ S ≪ |R |

25

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ = Ext(R; sk)

|state | ≤ S ≪ |R |

This implies that has enough entropy
even after seeing

R
state

25

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ = Ext(R; sk)

|state | ≤ S ≪ |R |

This implies that has enough entropy
even after seeing

R
state

 is statistically close to a truly random
string even in the presence of

Ext(R; sk)
state25

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

|state | ≤ S ≪ |R |

This implies that has enough entropy
even after seeing

R
state

 is statistically close to a truly random
string even in the presence of

Ext(R; sk)
state26

Incompressible Security

Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′

sk′ ← {0,1}n

|state | ≤ S ≪ |R |

This implies that has enough entropy
even after seeing

R
state

 is statistically close to a truly random
string even in the presence of

Ext(R; sk)
state26

Our Incompressible PKE
Scheme

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

• During encryption, garble incompressible SKE encryption circuit with message
hardwired. This outputs a garbled circuit, together with encrypted labels.

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

• During encryption, garble incompressible SKE encryption circuit with message
hardwired. This outputs a garbled circuit, together with encrypted labels.

• During decryption, first recover labels.

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

• During encryption, garble incompressible SKE encryption circuit with message
hardwired. This outputs a garbled circuit, together with encrypted labels.

• During decryption, first recover labels.

• Then evaluate garbled circuit. This produces an incomp. SKE ciphertext.

OUR INCOMPRESSIBLE PKE SCHEME

• Primitives required - PKE, incompressible SKE and garbling scheme.

• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

• During encryption, garble incompressible SKE encryption circuit with message
hardwired. This outputs a garbled circuit, together with encrypted labels.

• During decryption, first recover labels.

• Then evaluate garbled circuit. This produces an incomp. SKE ciphertext.

• Decrypt the incompressible SKE ciphertext.

OUR INCOMPRESSIBLE PKE SCHEME

OUR INCOMPRESSIBLE PKE SCHEME

C C̃
lab1,0

lab1,1

lab2,0

lab2,1

lab3,0

lab3,1

Circuit Garbling

OUR INCOMPRESSIBLE PKE SCHEME

C C̃
lab1,0

lab1,1

lab2,0

lab2,1

lab3,0

lab3,1

Correctness - For any , . x C(x) = C̃({labi,xi
})

Circuit Garbling

OUR INCOMPRESSIBLE PKE SCHEME

C C̃
lab1,0

lab1,1

lab2,0

lab2,1

lab3,0

lab3,1

Correctness - For any , . x C(x) = C̃({labi,xi
})

Security - . C̃ and {labi,xi
} reveal C(x), but nothing else

Circuit Garbling

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

•  
 

 
Return

Enc(pk, m) :
(C̃, labi,b) ← Garble(incSKE . Enc(⋅ , m))
ci,b ← PKE . Enc(pki,b, labi,b)

(C̃, {ci,b})

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

•  
 

 
Return

Enc(pk, m) :
(C̃, labi,b) ← Garble(incSKE . Enc(⋅ , m))
ci,b ← PKE . Enc(pki,b, labi,b)

(C̃, {ci,b})

•  
 

 
 

Return

Dec(sk, (C̃, {ci,b})) :
labi,ki

← PKE . Dec(ski,ki
, ci,ki

)
incSKE . ct = C̃({labi,ki

})
m ← incSKE . Dec(k, incSKE . ct)

m

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

•  
 

 
Return  

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

Enc(pk, m) :
(C̃, labi,b) ← Garble(incSKE . Enc(⋅ , m))
ci,b ← PKE . Enc(pki,b, labi,b)

(C̃, {ci,b})

•  
 

 
 

Return

Dec(sk, (C̃, {ci,b})) :
labi,ki

← PKE . Dec(ski,ki
, ci,ki

)
incSKE . ct = C̃({labi,ki

})
m ← incSKE . Dec(k, incSKE . ct)

m

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

•  
 

 
Return  

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

Enc(pk, m) :
(C̃, labi,b) ← Garble(incSKE . Enc(⋅ , m))
ci,b ← PKE . Enc(pki,b, labi,b)

(C̃, {ci,b})

•  
 

  
 =  

 
Return

Dec(sk, (C̃, {ci,b})) :
labi,ki

← PKE . Dec(ski,ki
, ci,ki

)
incSKE . ct = C̃({labi,ki

})
incSKE . Enc(k, m)

m ← incSKE . Dec(k, incSKE . ct)
m

OUR INCOMPRESSIBLE PKE SCHEME

• :  
Generate public/secret key,  
  
Generate . 

 and

•  
 

 
Return  

Setup()
2n
(pki,b, ski,b) ← PKE . Setup()

k ← incSKE . Setup()
pk = {pki,b} sk = (k, {ski,ki

})

Enc(pk, m) :
(C̃, labi,b) ← Garble(incSKE . Enc(⋅ , m))
ci,b ← PKE . Enc(pki,b, labi,b)

(C̃, {ci,b})

•  
 

  
 =  

 
Return

Dec(sk, (C̃, {ci,b})) :
labi,ki

← PKE . Dec(ski,ki
, ci,ki

)
incSKE . ct = C̃({labi,ki

})
incSKE . Enc(k, m)

m ← incSKE . Dec(k, incSKE . ct)
m

OUR INCOMPRESSIBLE PKE SCHEME

Thank You!

