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m

Alice wants to send m    Parties learn only function of m

f1 f2 f3
𝗌𝗄f1 𝗌𝗄f2 𝗌𝗄f3

Learns only 
f1(m) and f2(m)
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FE
- FE for inner-products [Katz, Sahai, Waters 08]

- FE for circuits, based on obfuscation  
[Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]

- FE for circuits, based on bilinear maps + LWE  
[Jain, Lin, Sahai 20]
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Adi Shamir

I want that the secret of the Coco-Cola 
company to be kept not in a tiny file of one 

kilobyte, which can be exfiltrated easily by an 
APT (Advanced Persistent Threat). I want that 
file to be a terabyte, which cannot be [easily] 

exfiltrated. 
 

(RSA 2013 conference)
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INCOMPRESSIBLE ENCRYPTION

Coca Cola Laptop

Recipe

APT

APT can transmit a few MBs to 
adversary. 

- Can either try to learn recipe 
from the ciphertext, and send 
the recipe

- Can send a short summary of 
the ciphertext. Later, 
adversary learns key, and 
uses this summary to learn 
recipe.
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- ALL-OR-NOTHING ENCRYPTION [Rivest 97]  
Weak form of incompressible enc. for secret key enc.  

- FORWARD SECURE STORAGE [Dziembowski 06] 

Incompressible Secret Key Encryption 

- INCOMPRESSIBLE CRYPTOGRAPHY [Guan, Wichs, Zhandry 22]   

Incompressible Public Key Encryption 

- RATE-1 INCOMPRESSIBLE ENCRYPTION FROM STANDARD ASSUMPTIONS 
[Branco, Dottling, Dujmovic 22] 
Efficient incompressible PKE schemes from LWE/DDH
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- DEFINE INCOMPRESSIBILITY FOR IBE/ABE/FE 
Multiple definitions possible - does adversary learn a distinguishing 
key, or the entire master secret key?   

- CONSTRUCTIONS BASED ON MINIMAL ASSUMPTIONS 

Incompressible SKE + IBE/ABE/FE —> Incompressible IBE/ABE/FE

- OPTIMAL* RATE CONSTRUCTIONS FROM STANDARD ASSUMPTIONS

*Optimality lies in the eyes of the beholder.
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• Security Definitions, and connections to other crypto primitives

• Incompressible SKE 

• Our Incompressible PKE scheme

• Conclusion and Open Questions

PLAN FOR THE REMAINING TALK
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Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb) c

state
|state | ≤ S

state
sk

b′ 

wins if b = b′ 
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Leakage Resilient Enc
- Adversary initially has access to 

whole secret key

- Must compress secret key

- Eventually, gets the whole 
ciphertext. Must use the 
compressed key and ciphertext to 
recover message
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Challenger Adversary
(sk, pk) ← Setup()

pk

m0, m1

b ← {0,1}
c ← Enc(pk, mb)

c

b′ ∈ {0,1}

Adversary wins if b = b′ 

f

f(sk)

| f(sk) | < S < |sk |

LEAKAGE RESILIENT SECURITY
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•   
Enc(  ):  .
sk ∈ {0,1}n

sk, m ct = m ⊕ sk

• Consider  and .  
After receiving , the adversary creates .

m0 = 0n m1 = 1n

c state = c[0]

• Only receiving , the second adversary returns .sk b′ = state ⊕ sk[0]

ONE TIME PAD IS COMPRESSIBLE
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• Idea: use a ‘strong randomness extractor’

• To encrypt a message , compute  which will used in 
OTP. Here,  is a huge random string.

m sk′ = Ext(R; sk)
R

• Output .c = (R, m ⊕ sk′ )

FIXING ONE TIME PAD [DZIEMBOWSKI 06]
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Challenger Adversary 1

sk ← {0,1}ℓ

m0, m1

b ← {0,1}

c = (R, sk′ ⊕ mb) c

state
Adversary 2 sk, state

b′ 

sk′ ← {0,1}n

|state | ≤ S ≪ |R |

This implies that  has enough entropy 
even after seeing 

R
state

 is statistically close to a truly random  
string even in the presence of 

Ext(R; sk)
state26
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• Incompressible IBE/ABE follow similar template

• Key Idea : Deferred encryption.

• During encryption, garble incompressible SKE encryption circuit with message 
hardwired. This outputs a garbled circuit, together with encrypted labels.

• During decryption, first recover labels.

• Then evaluate garbled circuit. This produces an incomp. SKE ciphertext.

• Decrypt the incompressible SKE ciphertext. 
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Circuit Garbling
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Thank You!


