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Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

skf

Learns only f(m)

• Hides everything but f(m)
• Without outsourcing to Bob
• Even when Bob is offline

[Sahai-Waters05…]

, m
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Enc(mpk, m0)
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Enc(mpk, m1)
skf1, …, skfq

             Indistinguishable whenever  for all               fi(m0) = fi(m1) i
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FE Security: Limitations

• Master secret key must remain completely hidden from adversary.

• Can generate any secret key!!!

• Wins if adversary obtains even a single distinguishing key (  such that 
).

skf
f(m0) ≠ f(m1)

• Unrealistic to expect that every secret key can be securely stored.
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• Security is lost if adversary has entire ciphertext and entire secret key due 

to correctness.

• Dziembowski’06 and Guan-Wichs-Zhandry’22 proposed incompressible 
security model. 

• Make ciphertext large so that long-term storage is expensive.

• Adversary gets a challenge ciphertext  for  and then it has to 
compress/reduce its storage which contains . 

ct* m0, m1
ct*

• After which it receives , but still should not be able to distinguish.sk

[Dziembowski’06,Guan-Wichs-Zhandry’22]
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Dziembowski’06 Introduced and constructed the first Incompressible SKE.

Guan-Wichs-Zhandry’22 Extended the notion to Incompressible PKE and provided constructions from 
regulars PKE (poor rate) and iO (rate-1).

Branco-Döttling-Dujmovic’23 Constructed CCA-Incompressible PKE (rate-1) from standard assumptions.

Guan-Wichs-Zhandry’23 Extended the notion to Multi-user Incompressible PKE setting.
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This work
• Our goal — generalize incompressibility to Functional encryption.

• Defined 3 levels of security notion.

• Adversary can be provided either  or multiple distinguishing 
keys or only a single distinguishing key.

msk

• Presented multiple incompressible FE schemes with (optimal) 
efficiency parameters.

• Incompressible ABE from standard assumptions.



Incompressible FE Security



Incompressible FE Security



Incompressible FE Security
Challenger Adversary 1



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup()



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk
f

KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb)

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

state

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

state
|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )

distinguishing f



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )

skf

distinguishing f



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

f
KeyGen(msk, f )

f
KeyGen(msk, f )

skf

distinguishing f



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

skf

distinguishing f



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

skf

distinguishing f

(Regular)



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

distinguishing {fi}i



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

{skfi}

distinguishing {fi}i



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

{skfi}

distinguishing {fi}i

(Semi-Strong)



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

msk



Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f )

f
KeyGen(msk, f )

msk

(Strong)



Our Results



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE

Semi-Strong 
Incomp FE 1 Large No FE



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE

Semi-Strong 
Incomp FE 1 Large No FE

Regular Incomp 
FE 1 Short* No FE



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE

Semi-Strong 
Incomp FE 1 Large No FE

Regular Incomp 
FE 1 Short* No FE

* = functions with one bit output



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE

Semi-Strong 
Incomp FE 1 Large No FE

Regular Incomp 
FE 1 Short* No FE

Regular Incomp 
ABE 1/2 Short Yes subexp LWE

* = functions with one bit output



Our Results
Primitive Rate 

( |m| / |ct| )  
Secret-key 

size Adaptive Assumptions

Semi-Strong 
Incomp FE 1/2 Short No FE

Semi-Strong 
Incomp FE 1/4 Short Yes FE

Semi-Strong 
Incomp FE 1 Large No FE

Regular Incomp 
FE 1 Short* No FE

Regular Incomp 
ABE 1/2 Short Yes subexp LWE

* = functions with one bit output

OPTIMAL [BGKNPR’24]
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Extending to better parameters

• Using rate-1/2 incompressible PKE and another layer of SKE encryption, 
secret keys can be made short.

• Replacing incompressible PKE component with extractors gives rate-1 
but large keys.

• Small keys can be achieved if the functions are Boolean.
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Incompressible ABE

• Assuming the (sub-exp) hardness of LWE problem, there exists 
incompressible ABE  for predicate classes with circuit of depth D with  

 |mpk | = poly(λ), |sk | = poly(λ) ⋅ D,
|ct | = poly(λ) ⋅ (D + log( |m | )) + m + S

• Uses two-level deferred encryption and this technique could find more 
applications in other contexts. Refer to the paper for more details.

• From minimal assumption of ABE by extending ideas from Guan-Wichs-
Zhandry’22.
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Future Directions

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

2. Strong Incompressible FE with selective/adaptive security.

3. Strong Incompressible ABE/IBE from standard assumptions.

4. Using incompressible cryptography to build other primitives.



Thank You
https://eprint.iacr.org/2024/798.pdf


