Incompressible Functional Encryption Mahesh Sreekumar Rajasree

Joint work with Rishab Goyal (UW-Madison), Venkata Koppula (IITD) and Aman Verma (IITD)

sh Sreekumar Rajasree CISPA Helmholtz

European Research Council Established by the European Commission

Functional Encryption (FE)

ers05]

Functional Encryption (FE)

ers05]

Functional Encryption (FE)

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

ers05]

FE Syntax

$Setup(\lambda) \rightarrow \text{ master public key } master secret key } msk$

$Setup(\lambda) \rightarrow$ master public key *mpk*, master secret key *msk*

$Enc(mpk, m) \rightarrow Ciphertext$ ct

FE Syntax

$Setup(\lambda) \rightarrow$ master public key *mpk*, master secret key *msk*

$Enc(mpk, m) \rightarrow Ciphertext$ ct

$KeyGen(msk, f) \rightarrow Secret key sk_f$

FE Syntax

$Setup(\lambda) \rightarrow$ master public key *mpk*, master secret key *msk*

$Enc(mpk, m) \rightarrow Ciphertext$ ct

$KeyGen(msk, f) \rightarrow Secret key sk_f$

$$Dec(sk_f,ct) \rightarrow f(m)$$

FE Syntax

$Enc(mpk, \mathbf{m}_{\mathbf{0}})$ $sk_{f_1}, \dots, sk_{f_q}$

$Enc(mpk, \mathbf{m}_{\mathbf{0}})$ $sk_{f_1}, \dots, sk_{f_q}$

 $Enc(mpk, \mathbf{m_1})$ $sk_{f_1}, \dots, sk_{f_q}$

$Enc(mpk, \mathbf{m}_1)$ $sk_{f_1}, \dots, sk_{f_q}$

Adversary

Indistinguishable whenever $f_i(m_0) = f_i(m_1)$ for all *i*

Master secret key must remain completely hidden from adversary.

- Master secret key must remain completely hidden from adversary.
 - Can generate any secret key!!!

- Master secret key must remain completely hidden from adversary.
 - Can generate any secret key!!!
- $f(m_0) \neq f(m_1)$.

• Wins if adversary obtains even a single **distinguishing key** (sk_f such that

- Master secret key must remain completely hidden from adversary.
 - Can generate any secret key!!!
- $f(m_0) \neq f(m_1)$.

• Wins if adversary obtains even a single **distinguishing key** (sk_f such that

Unrealistic to expect that every secret key can be securely stored.

 Security is lost if adversary has en to correctness.

Security is lost if adversary has entire ciphertext and entire secret key due

- to correctness.
- security model.

Security is lost if adversary has entire ciphertext and entire secret key due

Dziembowski'06 and Guan-Wichs-Zhandry'22 proposed incompressible

- to correctness.
- security model.
 - Make ciphertext large so that long-term storage is expensive.

Security is lost if adversary has entire ciphertext and entire secret key due

Dziembowski'06 and Guan-Wichs-Zhandry'22 proposed incompressible

- Security is lost if adversary has entire ciphertext and entire secret key due to correctness.
- Dziembowski'06 and Guan-Wichs-Zhandry'22 proposed incompressible security model.
 - Make ciphertext large so that long-term storage is expensive.
 - Adversary gets a challenge ciphertext ct^* for m_0, m_1 and then it has to compress/reduce its storage which contains ct^* .
Incompressible Cryptography [Dziembowski'06,Guan-Wichs-Zhandry'22]

- Security is lost if adversary has entire ciphertext and entire secret key due to correctness.
- Dziembowski'06 and Guan-Wichs-Zhandry'22 proposed incompressible security model.
 - Make ciphertext large so that long-term storage is expensive.
 - Adversary gets a challenge ciphertext ct^* for m_0, m_1 and then it has to compress/reduce its storage which contains ct^* .
 - After which it receives *sk*, but still should not be able to distinguish.

Primitives

Primitives

Introduced and constructed the first Incompressible SKE.

Dziembowski'06	Introduce
Guan-Wichs-Zhandry'22	Extended the notio

Primitives

ed and constructed the first Incompressible SKE.

on to Incompressible PKE and provided constructions from regulars PKE (poor rate) and iO (rate-1).

Dziembowski'06	Introduce
Guan-Wichs-Zhandry'22	Extended the notic
Branco-Döttling-Dujmovic'23	Constructed CCA

Primitives

ed and constructed the first Incompressible SKE.

on to Incompressible PKE and provided constructions from regulars PKE (poor rate) and iO (rate-1).

A-Incompressible PKE (rate-1) from standard assumptions.

Dziembowski'06	Introduce
Guan-Wichs-Zhandry'22	Extended the notion
Branco-Döttling-Dujmovic'23	Constructed CCA
Guan-Wichs-Zhandry'23	Extended t

Primitives

ed and constructed the first Incompressible SKE.

on to Incompressible PKE and provided constructions from regulars PKE (poor rate) and iO (rate-1).

A-Incompressible PKE (rate-1) from standard assumptions.

the notion to Multi-user Incompressible PKE setting.

• Our goal — generalize incompressibility to Functional encryption.

- - Defined 3 levels of security notion.

Our goal — generalize incompressibility to Functional encryption.

- Our goal generalize incompressibility to Functional encryption.
 - Defined 3 levels of security notion.
 - Adversary can be provided either *msk* or multiple distinguishing keys or only a single distinguishing key.

This work

- Our goal generalize incompressibility to Functional encryption.
 - Defined 3 levels of security notion.
 - Adversary can be provided either *msk* or multiple distinguishing keys or only a single distinguishing key.
- Presented multiple incompressible FE schemes with (optimal) efficiency parameters.

This work

- Our goal generalize incompressibility to Functional encryption.
 - Defined 3 levels of security notion.
 - Adversary can be provided either *msk* or multiple distinguishing keys or only a single distinguishing key.
- Presented multiple incompressible FE schemes with (optimal) efficiency parameters.
- Incompressible ABE from standard assumptions.

Incompressible FE Security

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$

mpk

 $(msk, mpk) \leftarrow Setup()$ mpk \blacktriangleright KeyGen(msk, f)

mpk, state Adversary 2 distinguishing f

(Regular)

(Strong)

Primitive

Rate (|m| / |ct|)

Our Results

Secret-key size

Adaptive

Assumptions

S

Rate **Primitive** (|m| / |ct|) Semi-Strong 1/2 Incomp FE

ecret-key size	Adaptive	Assumptions
Short	No	FE

Primitive	Rate (m / ct)	Secret-key size	Adaptive	Assumptions
Semi-Strong Incomp FE	1/2	Short	No	FE
Semi-Strong Incomp FE	1/4	Short	Yes	FE

Primitive	Rate (m / ct)	Secret-key size	Adaptive	Assumptions
Semi-Strong Incomp FE	1/2	Short	No	FE
Semi-Strong Incomp FE	1/4	Short	Yes	FE
Semi-Strong Incomp FE	1	Large	No	FE

Primitive	Rate (m / ct)	Secret-key size	Adaptive	Assumptions
Semi-Strong Incomp FE	1/2	Short	No	FE
Semi-Strong Incomp FE	1/4	Short	Yes	FE
Semi-Strong Incomp FE	1	Large	No	FE
Regular Incomp FE	1	Short*	No	FE

Primitive	Rate (m / ct)	Secret-key size	Adaptive	Assumptions	
Semi-Strong Incomp FE	1/2	Short	No	FE	
Semi-Strong Incomp FE	1/4	Short	Yes	FE	
Semi-Strong Incomp FE	1	Large	No	FE	
Regular Incomp FE	1	Short*	No	FE	

* = functions with one bit output

Primitive	Rate (m / ct)	S
Semi-Strong Incomp FE	1/2	
Semi-Strong Incomp FE	1/4	
Semi-Strong Incomp FE	1	
Regular Incomp FE	1	
Regular Incomp ABE	1/2	

* = functions with one bit output

ecret-key size	Adaptive	Assumptions
Short	No	FE
Short	Yes	FE
Large	No	FE
Short*	No	FE
Short	Yes	subexp LWE

ur

	Primitive	Rate (m / ct)	Secret-key size	Adaptive	Assumptions
OPTIMAL [BGKNPR'24]	Semi-Strong Incomp FE	1/2	Short	No	FE
	Semi-Strong Incomp FE	1/4	Short	Yes	FE
	Semi-Strong Incomp FE	1	Large	No	FE
	Regular Incomp FE	1	Short*	No	FE
	Regular Incomp ABE	1/2	Short	Yes	subexp LWE

* = functions with one bit output

Results

1. Regular FE scheme

1. Regular FE scheme

2. Regular SKE scheme

- 1. Regular FE scheme
- 2. Regular SKE scheme
- **3. Incompressible PKE scheme**

 $Setup \rightarrow$

 $Setup \rightarrow MPK = ($

 $Setup \to MPK = (FE.MPK),$

Rate-1/2 Incomp FE with Large Keys $Setup \rightarrow MPK = (FE.MPK, IncPKE.PK)$

 $Enc(m) \rightarrow$

 $Enc(m) \rightarrow$

IncPKE.Enc(**0**)

$Enc(m) \rightarrow FE \cdot Enc($

IncPKE . Enc(**0**)

•

IncPKE . Enc(**0**)

 $KeyGen(f) \rightarrow$

 $\hat{f}_{SKE.CT}($

Using rate-1/2 incompressible PK secret keys can be made short.

Using rate-1/2 incompressible PKE and another layer of SKE encryption,

- Using rate-1/2 incompressible PK secret keys can be made short.
- Replacing incompressible PKE constrained but large keys.

Using rate-1/2 incompressible PKE and another layer of SKE encryption,

Replacing incompressible PKE component with extractors gives rate-1

- secret keys can be made short.
- but large keys.
- Small keys can be achieved if the functions are Boolean.

Using rate-1/2 incompressible PKE and another layer of SKE encryption,

Replacing incompressible PKE component with extractors gives rate-1

Assuming the (sub-exp) hardness of LWE problem, there exists incompressible ABE for predicate classes with circuit of depth D with |mpk| = poly(λ), |sk| = poly(λ) · D, |ct| = poly(λ) · (D + log(|m|)) + m + S

- Assuming the (sub-exp) hardness of LWE problem, there exists incompressible ABE for predicate classes with circuit of depth D with $|mpk| = poly(\lambda), |sk| = poly(\lambda) \cdot D,$ $|ct| = poly(\lambda) \cdot (D + \log(|m|)) + m + S$
 - Uses two-level deferred encryption and this technique could find more applications in other contexts. Refer to the paper for more details.

- Assuming the (sub-exp) hardness of LWE problem, there exists incompressible ABE for predicate classes with circuit of depth D with |mpk| = poly(λ), |sk| = poly(λ) · D, |ct| = poly(λ) · (D + log(|m|)) + m + S
 - Uses two-level deferred encryption and this technique could find more applications in other contexts. Refer to the paper for more details.
- From minimal assumption of ABE by extending ideas from Guan-Wichs-Zhandry'22.

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

- 1. Rate-1 Semi-Strong Incompressible FE with adaptive security.
- 2. Strong Incompressible FE with selective/adaptive security.

- 1. Rate-1 Semi-Strong Incompressible FE with adaptive security.
- 2. Strong Incompressible FE with selective/adaptive security.
- 3. Strong Incompressible ABE/IBE from standard assumptions.

- 1. Rate-1 Semi-Strong Incompressible FE with adaptive security.
- 2. Strong Incompressible FE with selective/adaptive security.
- 3. Strong Incompressible ABE/IBE from standard assumptions.
- 4. Using incompressible cryptography to build other primitives.

Thank You https://eprint.iacr.org/2024/798.pdf