
Incompressible Functional
Encryption

Mahesh Sreekumar Rajasree

CISPA Helmholtz

Joint work with Rishab Goyal (UW-Madison), Venkata Koppula (IITD) and Aman Verma (IITD)

Functional Encryption (FE)[Sahai-Waters05…]

Functional Encryption (FE)

mpk

[Sahai-Waters05…]

Functional Encryption (FE)

msk mpk

[Sahai-Waters05…]

Functional Encryption (FE)

msk mpk

[Sahai-Waters05…]

Functional Encryption (FE)

msk mpk

[Sahai-Waters05…]

, m

Functional Encryption (FE)

msk mpk

[Sahai-Waters05…]

, m

Functional Encryption (FE)

msk mpk

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

Learns only f(m)

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

Learns only f(m)

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

Learns only f(m)

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

skf

Learns only f(m)

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

skf

Learns only f(m)

• Hides everything but f(m)

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

skf

Learns only f(m)

• Hides everything but f(m)
• Without outsourcing to Bob

[Sahai-Waters05…]

, m

Functional Encryption (FE)

ct = Enc(mpk, m)

msk mpk

skf

Learns only f(m)

• Hides everything but f(m)
• Without outsourcing to Bob
• Even when Bob is offline

[Sahai-Waters05…]

, m

FE Syntax

FE Syntax
Setup(λ) → master public key , master secret keympk msk

FE Syntax
Setup(λ) → master public key , master secret keympk msk

Enc(mpk , m) → ctCiphertext

FE Syntax
Setup(λ) → master public key , master secret keympk msk

Enc(mpk , m) → ctCiphertext

KeyGen(msk , f) → skfSecret key

FE Syntax
Setup(λ) → master public key , master secret keympk msk

Enc(mpk , m) → ctCiphertext

KeyGen(msk , f) → skfSecret key

Dec() →skf , ct f(m)

FE Security

FE Security

Adversary

FE Security

Adversary

Enc(mpk, m0)
skf1, …, skfq

FE Security

Adversary

Enc(mpk, m0)
skf1, …, skfq

Enc(mpk, m1)
skf1, …, skfq

FE Security

Adversary

Enc(mpk, m0)
skf1, …, skfq

Enc(mpk, m1)
skf1, …, skfq

 Indistinguishable whenever for all fi(m0) = fi(m1) i

FE Security: Limitations

FE Security: Limitations

• Master secret key must remain completely hidden from adversary.

FE Security: Limitations

• Master secret key must remain completely hidden from adversary.

• Can generate any secret key!!!

FE Security: Limitations

• Master secret key must remain completely hidden from adversary.

• Can generate any secret key!!!

• Wins if adversary obtains even a single distinguishing key (such that
).

skf
f(m0) ≠ f(m1)

FE Security: Limitations

• Master secret key must remain completely hidden from adversary.

• Can generate any secret key!!!

• Wins if adversary obtains even a single distinguishing key (such that
).

skf
f(m0) ≠ f(m1)

• Unrealistic to expect that every secret key can be securely stored.

Incompressible Cryptography
[Dziembowski’06,Guan-Wichs-Zhandry’22]

Incompressible Cryptography
• Security is lost if adversary has entire ciphertext and entire secret key due

to correctness.

[Dziembowski’06,Guan-Wichs-Zhandry’22]

Incompressible Cryptography
• Security is lost if adversary has entire ciphertext and entire secret key due

to correctness.

• Dziembowski’06 and Guan-Wichs-Zhandry’22 proposed incompressible
security model.

[Dziembowski’06,Guan-Wichs-Zhandry’22]

Incompressible Cryptography
• Security is lost if adversary has entire ciphertext and entire secret key due

to correctness.

• Dziembowski’06 and Guan-Wichs-Zhandry’22 proposed incompressible
security model.

• Make ciphertext large so that long-term storage is expensive.

[Dziembowski’06,Guan-Wichs-Zhandry’22]

Incompressible Cryptography
• Security is lost if adversary has entire ciphertext and entire secret key due

to correctness.

• Dziembowski’06 and Guan-Wichs-Zhandry’22 proposed incompressible
security model.

• Make ciphertext large so that long-term storage is expensive.

• Adversary gets a challenge ciphertext for and then it has to
compress/reduce its storage which contains .

ct* m0, m1
ct*

[Dziembowski’06,Guan-Wichs-Zhandry’22]

Incompressible Cryptography
• Security is lost if adversary has entire ciphertext and entire secret key due

to correctness.

• Dziembowski’06 and Guan-Wichs-Zhandry’22 proposed incompressible
security model.

• Make ciphertext large so that long-term storage is expensive.

• Adversary gets a challenge ciphertext for and then it has to
compress/reduce its storage which contains .

ct* m0, m1
ct*

• After which it receives , but still should not be able to distinguish.sk

[Dziembowski’06,Guan-Wichs-Zhandry’22]

Prior works

Prior works
Primitives

Prior works
Primitives

Dziembowski’06 Introduced and constructed the first Incompressible SKE.

Prior works
Primitives

Dziembowski’06 Introduced and constructed the first Incompressible SKE.

Guan-Wichs-Zhandry’22 Extended the notion to Incompressible PKE and provided constructions from
regulars PKE (poor rate) and iO (rate-1).

Prior works
Primitives

Dziembowski’06 Introduced and constructed the first Incompressible SKE.

Guan-Wichs-Zhandry’22 Extended the notion to Incompressible PKE and provided constructions from
regulars PKE (poor rate) and iO (rate-1).

Branco-Döttling-Dujmovic’23 Constructed CCA-Incompressible PKE (rate-1) from standard assumptions.

Prior works
Primitives

Dziembowski’06 Introduced and constructed the first Incompressible SKE.

Guan-Wichs-Zhandry’22 Extended the notion to Incompressible PKE and provided constructions from
regulars PKE (poor rate) and iO (rate-1).

Branco-Döttling-Dujmovic’23 Constructed CCA-Incompressible PKE (rate-1) from standard assumptions.

Guan-Wichs-Zhandry’23 Extended the notion to Multi-user Incompressible PKE setting.

This work

This work
• Our goal — generalize incompressibility to Functional encryption.

This work
• Our goal — generalize incompressibility to Functional encryption.

• Defined 3 levels of security notion.

This work
• Our goal — generalize incompressibility to Functional encryption.

• Defined 3 levels of security notion.

• Adversary can be provided either or multiple distinguishing
keys or only a single distinguishing key.

msk

This work
• Our goal — generalize incompressibility to Functional encryption.

• Defined 3 levels of security notion.

• Adversary can be provided either or multiple distinguishing
keys or only a single distinguishing key.

msk

• Presented multiple incompressible FE schemes with (optimal)
efficiency parameters.

This work
• Our goal — generalize incompressibility to Functional encryption.

• Defined 3 levels of security notion.

• Adversary can be provided either or multiple distinguishing
keys or only a single distinguishing key.

msk

• Presented multiple incompressible FE schemes with (optimal)
efficiency parameters.

• Incompressible ABE from standard assumptions.

Incompressible FE Security

Incompressible FE Security

Incompressible FE Security
Challenger Adversary 1

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup()

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk
f

KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

state

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

state
|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

distinguishing f

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

skf

distinguishing f

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

f
KeyGen(msk, f)

f
KeyGen(msk, f)

skf

distinguishing f

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

skf

distinguishing f

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

skf

distinguishing f

(Regular)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

distinguishing {fi}i

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

{skfi}

distinguishing {fi}i

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

{skfi}

distinguishing {fi}i

(Semi-Strong)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

msk

Incompressible FE Security
Challenger Adversary 1

(msk, mpk) ← Setup() mpk

m0, m1
b ← {0,1}

c ← Enc(mpk, mb) c

stateAdversary 2
mpk, state

b′￼∈ {0,1}

|state | ≤ S

Adversaries win if b = b′￼

f
KeyGen(msk, f)

f
KeyGen(msk, f)

msk

(Strong)

Our Results

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Semi-Strong
Incomp FE 1 Large No FE

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Semi-Strong
Incomp FE 1 Large No FE

Regular Incomp
FE 1 Short* No FE

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Semi-Strong
Incomp FE 1 Large No FE

Regular Incomp
FE 1 Short* No FE

* = functions with one bit output

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Semi-Strong
Incomp FE 1 Large No FE

Regular Incomp
FE 1 Short* No FE

Regular Incomp
ABE 1/2 Short Yes subexp LWE

* = functions with one bit output

Our Results
Primitive Rate

(|m| / |ct|)
Secret-key

size Adaptive Assumptions

Semi-Strong
Incomp FE 1/2 Short No FE

Semi-Strong
Incomp FE 1/4 Short Yes FE

Semi-Strong
Incomp FE 1 Large No FE

Regular Incomp
FE 1 Short* No FE

Regular Incomp
ABE 1/2 Short Yes subexp LWE

* = functions with one bit output

OPTIMAL [BGKNPR’24]

Rate-1/2 Incomp FE with Large Keys

Rate-1/2 Incomp FE with Large Keys
1. Regular FE scheme

Rate-1/2 Incomp FE with Large Keys
1. Regular FE scheme
2. Regular SKE scheme

Rate-1/2 Incomp FE with Large Keys
1. Regular FE scheme
2. Regular SKE scheme
3. Incompressible PKE scheme

Rate-1/2 Incomp FE with Large Keys

Rate-1/2 Incomp FE with Large Keys
Setup →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

Enc(m) →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

IncPKE . Enc(0)Enc(m) →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(IncPKE . Enc(0)Enc(m) →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0)Enc(m) →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0)Enc(m) → 0 ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) →

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , b ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CTb , ,

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0
Real Mode

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m)

Real Mode

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0

Real Mode

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0 (b̂, IncPKE . SK) = SKE . Dec(SKE . SK, SKE . CT)

Real Mode

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0 (b̂, IncPKE . SK) = SKE . Dec(SKE . SK, SKE . CT)

f(IncPKE . Dec(IncPKE . SK, CT))

Real Mode

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0 (b̂, IncPKE . SK) = SKE . Dec(SKE . SK, SKE . CT)

f(IncPKE . Dec(IncPKE . SK, CT))

Real Mode

Distinguishing or not

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0 (b̂, IncPKE . SK) = SKE . Dec(SKE . SK, SKE . CT)

f(IncPKE . Dec(IncPKE . SK, CT))

Real Mode

Distinguishing or not

|ct | = |m | + 1 + |m | + poly(λ)

Rate-1/2 Incomp FE with Large Keys
Setup → MPK = (FE . MPK , IncPKE . PK)

MSK = (FE . MSK , IncPKE . SK)

FE . Enc(m , IncPKE . Enc(0))Enc(m) → 0 , , ⊥

KeyGen(f) → FE . KeyGen(̂fSKE.CT) SKE . Enc(0)

̂fSKE.CT(m , CT)b , , SKE . SK

=
1)
2)
3)

f(m) If b = 0

f(m) If b̂ = 0 (b̂, IncPKE . SK) = SKE . Dec(SKE . SK, SKE . CT)

f(IncPKE . Dec(IncPKE . SK, CT))

Real Mode

Distinguishing or not

|ct | = |m | + 1 + |m | + poly(λ)

Extending to better parameters

Extending to better parameters

• Using rate-1/2 incompressible PKE and another layer of SKE encryption,
secret keys can be made short.

Extending to better parameters

• Using rate-1/2 incompressible PKE and another layer of SKE encryption,
secret keys can be made short.

• Replacing incompressible PKE component with extractors gives rate-1
but large keys.

Extending to better parameters

• Using rate-1/2 incompressible PKE and another layer of SKE encryption,
secret keys can be made short.

• Replacing incompressible PKE component with extractors gives rate-1
but large keys.

• Small keys can be achieved if the functions are Boolean.

Incompressible ABE

Incompressible ABE

• Assuming the (sub-exp) hardness of LWE problem, there exists
incompressible ABE for predicate classes with circuit of depth D with  

 |mpk | = poly(λ), |sk | = poly(λ) ⋅ D,
|ct | = poly(λ) ⋅ (D + log(|m |)) + m + S

Incompressible ABE

• Assuming the (sub-exp) hardness of LWE problem, there exists
incompressible ABE for predicate classes with circuit of depth D with  

 |mpk | = poly(λ), |sk | = poly(λ) ⋅ D,
|ct | = poly(λ) ⋅ (D + log(|m |)) + m + S

• Uses two-level deferred encryption and this technique could find more
applications in other contexts. Refer to the paper for more details.

Incompressible ABE

• Assuming the (sub-exp) hardness of LWE problem, there exists
incompressible ABE for predicate classes with circuit of depth D with  

 |mpk | = poly(λ), |sk | = poly(λ) ⋅ D,
|ct | = poly(λ) ⋅ (D + log(|m |)) + m + S

• Uses two-level deferred encryption and this technique could find more
applications in other contexts. Refer to the paper for more details.

• From minimal assumption of ABE by extending ideas from Guan-Wichs-
Zhandry’22.

Future Directions

Future Directions

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

Future Directions

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

2. Strong Incompressible FE with selective/adaptive security.

Future Directions

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

2. Strong Incompressible FE with selective/adaptive security.

3. Strong Incompressible ABE/IBE from standard assumptions.

Future Directions

1. Rate-1 Semi-Strong Incompressible FE with adaptive security.

2. Strong Incompressible FE with selective/adaptive security.

3. Strong Incompressible ABE/IBE from standard assumptions.

4. Using incompressible cryptography to build other primitives.

Thank You
https://eprint.iacr.org/2024/798.pdf

