Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures

Mahesh Sreekumar Rajasree Center for Cybersecurity, Indian Institute of Technology Kanpur INDOCRYPT 2019, Hyderabad

Introduction

Hash function Structure of KECCAK Results

Our Preimage attacks

Preimage attack on 2 rounds KECCAK-512 Preimage attack on 3 rounds KECCAK-384

Conclusion

• Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.

- Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.
- Practical applications include message integrity checks, digital signatures, authentication, etc.

- Cryptographic hash functions are hash functions which are resistant to preimage, collision attacks and other attacks.
- Practical applications include message integrity checks, digital signatures, authentication, etc.
- ▶ SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST which is based on KECCAK.

• **Preimage attack:** Given H(m)

• Preimage attack: Given H(m), find any m' such that H(m') = H(m).

- Preimage attack: Given H(m), find any m' such that H(m') = H(m).
- Collision attack: Find any $m \neq m'$

- Preimage attack: Given H(m), find any m' such that H(m') = H(m).
- Collision attack: Find any $m \neq m'$, such that H(m) = H(m').

Sponge Construction

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Sponge Construction

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf pad: padding function (10*1)

Sponge Construction

Source: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf pad: padding function (10*1) f: KECCAK-f permutation

Figure: State

Block size: 5 × 5 × 64 = 1600. c = 2ℓ, r = 1600 − c where ℓ ∈ {224, 256, 384, 512}.

- Block size: $5 \times 5 \times 64 = 1600$.
- $c = 2\ell, r = 1600 c$ where $\ell \in \{224, 256, 384, 512\}.$
- Number of rounds: In each round there are five Step mappings (θ, ρ, π, χ, ι).

Description of θ

 $S'[x,y,z] = S[x,y,z] \oplus P[(x+1) \mod 5][(z-1) \mod 64] \oplus P[(x-1) \mod 5][z]$ where $P[x][z] = \bigoplus_{i=0}^4 S[x,i,z]$

Source: https://keccak.team/figures.html

Description of ρ

Figure: ρ

Source: https://keccak.team/figures.html

Description of π

Figure: π

 $Source:\ https://keccak.team/figures.html$

▶ χ : Only non-linear function

$$\begin{split} S'[x,y,z] &= S[x,y,z] \oplus ((S[(x+1) \mod 5,y,z] \oplus 1) \cdot \\ & S[(x+2) \mod 5,y,z]) \end{split}$$

• χ : Only non-linear function

$$\begin{split} S'[x,y,z] &= S[x,y,z] \oplus ((S[(x+1) \mod 5,y,z] \oplus 1) \cdot \\ & S[(x+2) \mod 5,y,z]) \end{split}$$

$$S'[0,0] = S[0,0] \oplus RC_i$$

where RC_i is a constant which depends on i where i is the round number.

Rounds	Instances	Our Results	Previous Results
2	384	2^{113}	2^{129} [Guo et al., 2016]
	512	2^{321}	2^{384} [Guo et al., 2016]
3	384	2^{321}	2^{322} [Guo et al., 2016]
	512	2^{475}	2^{482} [Guo et al., 2016]
4	384	2^{371}	2^{378} [Morawiecki et al., 2013]

Table: Summary of preimage attacks

1. If all input bits are variables, then the output of KECCAK is a **non-linear polynomial**.

- 1. If all input bits are variables, then the output of KECCAK is a **non-linear polynomial**.
- 2. This is due to χ function.

- 1. If all input bits are variables, then the output of KECCAK is a **non-linear polynomial**.
- 2. This is due to χ function.
- 3. To avoid this, we will equate one of the terms in the product to some **constant**.

- 1. If all input bits are variables, then the output of KECCAK is a **non-linear polynomial**.
- 2. This is due to χ function.
- 3. To avoid this, we will equate one of the terms in the product to some **constant**.
- 4. θ must also be controlled to avoid diffusion.

- 1. If all input bits are variables, then the output of KECCAK is a **non-linear polynomial**.
- 2. This is due to χ function.
- 3. To avoid this, we will equate one of the terms in the product to some **constant**.
- 4. θ must also be controlled to avoid diffusion.
- 5. Make sure that the **number of equations** are not more than the **number of variables**.

Preimage attack on 2 rounds KECCAK-512

Figure: Preimage attack on 2-rounds KECCAK-512

Preimage attack on 2 rounds KECCAK-512

Figure: Preimage attack on 2-rounds KECCAK-512

- Number of variables = $6 \times 64 = 384$.
- ▶ Number of equations for first $\theta = 3 \times 64 = 192$.

- Number of variables = $6 \times 64 = 384$.
- ▶ Number of equations for first $\theta = 3 \times 64 = 192$.
- One equation for padding.

- Number of variables = $6 \times 64 = 384$.
- Number of equations for first $\theta = 3 \times 64 = 192$.
- One equation for padding.
- ▶ Number of equations between message variable and hash bits = 3 * 64 − 1 = 191.

- Number of variables $= 6 \times 64 = 384$.
- Number of equations for first $\theta = 3 \times 64 = 192$.
- One equation for padding.
- ▶ Number of equations between message variable and hash bits = 3 * 64 − 1 = 191.
- Complexity $2^{512-191} = 2^{321}$.

Preimage attack on 3 rounds KECCAK-384

Figure: Preimage attack on 3-rounds KECCAK-384

Preimage attack on 3 rounds KECCAK-384

Figure: Preimage attack on 3-rounds KECCAK-384

19

1. Number of variables = $6 \times 64 = 384$.

- 1. Number of variables = $6 \times 64 = 384$.
- 2. Number of equations for first $\theta = 2 \times 64 = 128$.

- 1. Number of variables = $6 \times 64 = 384$.
- 2. Number of equations for first $\theta = 2 \times 64 = 128$.
- 3. Number of equations for second $\theta = 3 \times 64 = 192$.

- 1. Number of variables = $6 \times 64 = 384$.
- 2. Number of equations for first $\theta = 2 \times 64 = 128$.
- 3. Number of equations for second $\theta = 3 \times 64 = 192$.
- 4. One equation for padding.

- 1. Number of variables = $6 \times 64 = 384$.
- 2. Number of equations for first $\theta = 2 \times 64 = 128$.
- 3. Number of equations for second $\theta = 3 \times 64 = 192$.
- 4. One equation for padding.
- 5. Number of equations between message variables and hash bits = 63.

- 1. Number of variables = $6 \times 64 = 384$.
- 2. Number of equations for first $\theta = 2 \times 64 = 128$.
- 3. Number of equations for second $\theta = 3 \times 64 = 192$.
- 4. One equation for padding.
- 5. Number of equations between message variables and hash bits = 63.
- 6. Complexity $2^{384-63} = 2^{321}$.

▶ We have presented the best theoretical preimage attack for round-reduced KECCAK.

- ▶ We have presented the best theoretical preimage attack for round-reduced KECCAK.
- ▶ Would be interesting to see whether non-linear structures along with other techniques can be used to find better preimage attacks for higher rounds.

Thank You

Questions?

Guo, J., Liu, M., and Song, L. (2016). Linear structures: applications to cryptanalysis of round-reduced keccak.

In International Conference on the Theory and Application of Cryptology and Information Security, pages 249–274. Springer.

 Morawiecki, P., Pieprzyk, J., and Srebrny, M. (2013).
 Rotational cryptanalysis of round-reduced keccak.
 In International Workshop on Fast Software Encryption, pages 241–262. Springer.