Leakage-Resilient Key-Dependent **Message Secure Encryption** Schemes

- Mahesh Sreekumar Rajasree **Post-Doctoral Researcher CISPA** Helmholtz
- Joint work with Dhairya Gupta (IITD) and Harihar Swaminathan (IITD)

Introduction

- Introduction
- Standard Security

- Introduction
- Standard Security
- Leakage-Resilience Security

- Introduction
- Standard Security
- Leakage-Resilience Security
- Key-Dependent Message Security

- Introduction
- Standard Security
- Leakage-Resilience Security
- Key-Dependent Message Security
- LR-KDM Security

- Introduction
- Standard Security
- Leakage-Resilience Security
- Key-Dependent Message Security
- LR-KDM Security
- Separation, Constructions and Amplifications

- Introduction
- Standard Security
- Leakage-Resilience Security
- Key-Dependent Message Security
- LR-KDM Security
- Separation, Constructions and Amplifications
- Conclusion

Introduction

Encryption Scheme

Encryption Scheme

Encryption Scheme BOB

EVE

***"

***"

2 types :

 secret key (SKE) - Both Alice and Bob have the same key.

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

"Password is

2 types :

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

Consists of 3 algorithms :

• *Setup()* : Outputs the keys

"Password is

2 types :

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

Consists of 3 algorithms :

• *Setup()* : Outputs the keys

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

• *Enc*(*pk/sk*, *m*) : Outputs ciphertext

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decryption has secret key.

- *Setup()* : Outputs the keys
- *Enc*(*pk*/*sk*, *m*) : Outputs ciphertext
- Dec(sk, c): Outputs message or error

• Diffie, Hellman-76 presented the first key exchanged photocol.

- Diffie, Hellman-76 presented the first key exchanged photocol.
- RSA cryptosystem was introduced in 1977.

- Diffie, Hellman-76 presented the first key exchanged photocol.
- RSA cryptosystem was introduced in 1977.
- Goldwaser, Micali-84 proposed semantic security.

Security Definitions

Standard Security [Goldwaser, Micali-84]
pk

 $(pk, sk) \leftarrow Setup()$

pk

 $(pk, sk) \leftarrow Setup()$

 $b \leftarrow \{0,1\}$

pk

 $(pk, sk) \leftarrow Setup()$

 $b \leftarrow \{0,1\}$

 $c \leftarrow Enc(pk, m_b)$

pk

 $(pk, sk) \leftarrow Setup()$

 $b \leftarrow \{0,1\}$

 $c \leftarrow Enc(pk, m_b)$

Standard Security [Goldwaser, Micali-84] Challenger Adversary pk $(pk, sk) \leftarrow Setup()$ m_0, m_1 $b \leftarrow \{0,1\}$ $c \leftarrow Enc(pk, m_b)$ С

Standard Security [Goldwaser, Micali-84] Adversary Challenger pk $(pk, sk) \leftarrow Setup()$ m_0, m_1 $b \leftarrow \{0,1\}$ $c \leftarrow Enc(pk, m_b)$ С $b' \in \{0,1\}$

Adversary wins if b = b'

Chosen-Ciphertext Attacks

- Chosen-Ciphertext Attacks
- Non-malleable

- Chosen-Ciphertext Attacks
- Non-malleable
- Leakage-Resilient

- Chosen-Ciphertext Attacks
- Non-malleable
- Leakage-Resilient
- Key-Dependent Message

- Chosen-Ciphertext Attacks
- Non-malleable
- Leakage-Resilient
- Key-Dependent Message
- Selective Opening

- Chosen-Ciphertext Attacks
- Non-malleable
- Leakage-Resilient
- Key-Dependent Message
- Selective Opening
- Incompressible

Can Secret Key be leaked?

Can Secret Key be leaked?

 Standard security says that adversary cannot distinguish between key is leaked.

encryptions of two different message provided no information of secret

Can Secret Key be leaked?

- Standard security says that adversary cannot distinguish between key is leaked.
- In practice, secret key can be leaked using side-channel attacks.

encryptions of two different message provided no information of secret

Leakage-Resilience

Security against Leakage

Security against Leakage

Security against Leakage Adversary

Security against Leakage Adversary

|f(sk)| < S < |sk|

|f(sk)| < S < |sk|

|f(sk)| < S < |sk|

Adversary wins if b = b'

Leakage Resilient Schemes

Leakage Resilient Schemes

 Canetti et al.-00 and Dodis et al.of *sk*.

• Canetti et al.-00 and Dodis et al.-01 gave construction where f returns bits

Leakage Resilient Schemes

- Canetti et al.-00 and Dodis et al.of *sk*.
- Dziembowski-06, Di Crescenzo e arbitrary function *f*.

Canetti et al.-00 and Dodis et al.-01 gave construction where f returns bits

• Dziembowski-06, Di Crescenzo et al.-06, Akavia et al.-09, etc. considered
Leakage Resilient Schemes

- Canetti et al.-00 and Dodis et al.of *sk*.
- Dziembowski-06, Di Crescenzo erarbitrary function *f*.
- Other works include Dodis et al.-0
 Faonio et al.-15 and many more.

Canetti et al.-00 and Dodis et al.-01 gave construction where f returns bits

• Dziembowski-06, Di Crescenzo et al.-06, Akavia et al.-09, etc. considered

• Other works include Dodis et al.-09, Brakerski et al.-10, Dodis et al.-10,

Key-Dependent Message Security

KDM Security

kDMS Challenger $(pk, sk) \leftarrow Setup()$ $m_0 \leftarrow \mathbf{0}$

 $m_1 \leftarrow f(sk)$

 $m_0 \leftarrow \mathbf{0}$ $m_1 \leftarrow f(sk)$ $b \leftarrow \{0,1\}$ $c \leftarrow Enc(pk, m_b)$

Adversary wins if b = b'

• **Circular**: $f_i(x_1, ..., x_n) = x_i$.

- Circular: $f_i(x_1, ..., x_n) = x_i$.

• **Projection**: if each of its output bits depends on at most a single input bit.

- Circular: $f_i(x_1, ..., x_n) = x_i$.
- a vector.

• **Projection**: if each of its output bits depends on at most a single input bit.

• Affine: can be represented as f(x) = Ax + b where A is a matrix and b is

- Circular: $f_i(x_1, ..., x_n) = x_i$.
- a vector.
- Circuits of a-priori bounded size s: described by a circuit of size s.

• Projection: if each of its output bits depends on at most a single input bit.

• Affine: can be represented as f(x) = Ax + b where A is a matrix and b is

Black, Rogaway, Shrimpton-03 formalised KDM security.

- Black, Rogaway, Shrimpton-03 formalised KDM security.
- PKE scheme from DDH assumption.

Boneh, Halevi, Hamburg, Ostrovsky-08 developed the first KDM-secure

- Black, Rogaway, Shrimpton-03 formalised KDM security.
- Boneh, Halevi, Hamburg, Ostrovsky-08 developed the first KDM-secure PKE scheme from DDH assumption.
- Applebaum, Cash, Peikert, Sahai-09 gave construction for KDM-secure PKE from LWE.

Leakage-Resilient Key Dependent Message Secuity

LR-KDM security

LR-KDM security Adversary

LR-KDM security Adversary

LR-KDM security

LR-KDM security Adversary pk h |h(sk)| < S < |sk|h(sk)

LR-KDM security Adversary pk h |h(sk)| < S < |sk|

LR-KDM security Adversary pk h |h(sk)| < S < |sk|

h(sk)

f

Adversary wins if b = b'

Prior Works
Naor and Segev-09 showed that BHHO construction is LR.

Prior Works

- Naor and Segev-09 showed that BHHO construction is LR.
- Brakerski and Goldwasser-10 constructed schemes that are LR and KDM scheme from QR and DCR assumptions.

- Naor and Segev-09 showed that BHHO construction is LR.
- Brakerski and Goldwasser-10 constructed schemes that are LR and KDM scheme from QR and DCR assumptions.
- Hajiabadi, Kapron, Srinivasan-16 developed a scheme that are LR and KDM secure schemes using homomorphic hash proof systems.

- Naor and Segev-09 showed that BHHO construction is LR.
- Brakerski and Goldwasser-10 constructed schemes that are LR and KDM scheme from QR and DCR assumptions.
- Hajiabadi, Kapron, Srinivasan-16 developed a scheme that are LR and KDM secure schemes using homomorphic hash proof systems.
- Brakerski, Lombardi, Segev, Vaikuntanathan-18 used batch encryption to construct scheme that are LR and KDM secure schemes based on DDH, LPN and other standard assumptions.

- Naor and Segev-09 showed that BHHO construction is LR.
- Brakerski and Goldwasser-10 constructed schemes that are LR and KDM scheme from QR and DCR assumptions.
- Hajiabadi, Kapron, Srinivasan-16 developed a scheme that are LR and KDM secure schemes using homomorphic hash proof systems.
- Brakerski, Lombardi, Segev, Vaikuntanathan-18 used batch encryption to construct scheme that are LR and KDM secure schemes based on DDH, LPN and other standard assumptions.
- Dodis, Karthikeyan, Wichs-21 defined CS+LR Security which is stronger than LR-KDM and used it to construct updatable PKE schemes.

Separation Result

Result

There exists schemes that are LR and KDM secure, but isn't LR-KDM secure.

Result

Let SKE' be LR and circular-KDM.

- Let SKE' be LR and circular-KDM.
- PRF be a pseudorandom function.

- Let SKE' be LR and circular-KDM.
- PRF be a pseudorandom function.
- Setup: Run ske . $sk \leftarrow SKE'$. Set sk = (k, ske . sk)

• Setup: Run ske . sk \leftarrow SKE'. Setup() and generate PRF key k. Output

- Let SKE' be LR and circular-KDM.
- PRF be a pseudorandom function.
- $sk = (k, ske \cdot sk)$
- Generate $c_1 \leftarrow SKE'$. *Enc(ske*. *sk*, *m*). Output $ct = (c_0, c_1)$.

• Setup: Run ske . sk \leftarrow SKE'. Setup() and generate PRF key k. Output

• Enc(sk, m): If $m = ske \cdot sk$, set $c_0 = PRF(k, 1)$. Else, $c_0 = PRF(k, 0)$.

- Let SKE' be LR and circular-KDM.
- PRF be a pseudorandom function.
- $sk = (k, ske \cdot sk)$
- Generate $c_1 \leftarrow SKE'$. *Enc(ske*. *sk*, *m*). Output $ct = (c_0, c_1)$.
- Dec(sk, ct): Output SKE'. $Dec(ske \cdot sk, c_1)$.

• Setup: Run ske . sk \leftarrow SKE'. Setup() and generate PRF key k. Output

• Enc(sk, m): If $m = ske \cdot sk$, set $c_0 = PRF(k, 1)$. Else, $c_0 = PRF(k, 0)$.

• If adversary A breaks LR security, the LR security of SKE' is broken.

- If adversary A breaks LR security, the LR security of SKE' is broken.
 - Reduction B on receiving h from A, generates k and relays $h(k, \cdot)$ to challenger.

- If adversary A breaks LR security, the LR security of SKE' is broken.
 - Reduction B on receiving h from A, generates k and relays $h(k, \cdot)$ to challenger.
 - It generate $c_0 = PRF(k,0)$.

- If adversary A breaks LR security, the LR security of SKE' is broken.
 - Reduction *B* on receiving *h* from *A*, generates *k* and relays $h(k, \cdot)$ to challenger.
 - It generate $c_0 = PRF(k,0)$.
- If adversary A breaks f-KDM security, the KDM security of SKE' is broken.

- If adversary A breaks LR security, the LR security of SKE' is broken.
 - Reduction *B* on receiving *h* from *A*, generates *k* and relays $h(k, \cdot)$ to challenger.
 - It generate $c_0 = PRF(k,0)$.
- If adversary A breaks f-KDM security, the KDM security of SKE' is broken.
 - Here, f(x, y) = y.

- If adversary A breaks LR security, the LR security of SKE' is broken.
 - Reduction *B* on receiving *h* from *A*, generates *k* and relays $h(k, \cdot)$ to challenger.
 - It generate $c_0 = PRF(k,0)$.
- If adversary A breaks f-KDM security, the KDM security of SKE' is broken.
 - Here, f(x, y) = y.
 - *B* generates a random c_0 .

Not LR-KDM secure

Not LR-KDM secure

• Adversary can leak the entire k in the leakage phase.

Not LR-KDM secure

- Adversary can leak the entire k in the leakage phase.
- Using k, it checks whether $c_0 = PRF(k,0)$ or not.

Constructions and Amplifications

• Wee-16 showed that homomorphic HPS gives KDM secure schemes.

- - schemes.

• Wee-16 showed that homomorphic HPS gives KDM secure schemes.

We defined LR homomorphic HPS and constructed LR-KDM secure

- Wee-16 showed that homomorphic HPS gives KDM secure schemes.
 - We defined LR homomorphic HPS and constructed LR-KDM secure schemes.
- We showed that batch encryption schemes are also LR-KDM secure.

 Waters and Wichs-23 showed that gives circuit-KDM PKE.

Waters and Wichs-23 showed that PKE + (existence) circular-KDM SKE

- Waters and Wichs-23 showed that gives circuit-KDM PKE.
- Applebaum-14 showed projection circuit-KDM PKE.

Waters and Wichs-23 showed that PKE + (existence) circular-KDM SKE

Applebaum-14 showed projection-KDM PKE + garbled circuits implies

- gives circuit-KDM PKE.
- circuit-KDM PKE.
- We showed these can be used in the LR-KDM setting.

Waters and Wichs-23 showed that PKE + (existence) circular-KDM SKE

Applebaum-14 showed projection-KDM PKE + garbled circuits implies

Future Works

Future Works

 Multi-Key LR-KDM security where of public-secret keys.

Multi-Key LR-KDM security where adversary interacts with multiple pairs

Future Works

- of public-secret keys.
- LR-KDM security under Chosen-Ciphertext Attacks.

Multi-Key LR-KDM security where adversary interacts with multiple pairs
Future Works

- of public-secret keys.
- LR-KDM security under Chosen-Ciphertext Attacks.
- LR-KDM in advanced primitives such as IBE and ABE.

Multi-Key LR-KDM security where adversary interacts with multiple pairs

