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Abstract

Lattices have become a topic of active research in Computer Science. They have many appli-
cations in cryptography and crypt-analysis. One of the most important problems related to
Lattices is the Shortest Lattice Vector Problem (SVP). In this report, we propose certain im-
provements to the well-known LLL Algorithm, which tackles a variation of SVP: γ-Approximate
SVP.

1 Lattices

In Chemistry, a lattice is defined as a regularly repeated three-dimensional arrangement of atoms,
ions, or molecules in certain solids. This definition can be extended to general n dimensions. An
n-dimensional Lattice is a periodically repeating n-dimensional arrangement of points in Rn. In
more precise terms, an n-dimensional lattice L can be defined as follows:

L =

{ K∑
i=1

aibi|ai ∈ Z
}

, where B = {b1,b2, . . . ,bK}, bi ∈ Rn, is called the generating set.

In this report, it is assumed that the generating set is a set of linearly independent vectors. So,
B can be called the Basis of L. A lattice can have infinite such Bases.

Another way to define lattices is as follows:

DEFINITION: An n-dimensional lattice L is a discrete additive subgroup of Rn. [1]

More recently, lattices have become a topic of active research in computer science due to their
applications in cryptography, and their unique properties from a computational complexity point
of view.

One of the most important problems related to Lattices is the Shortest Lattice Vector Problem
(SVP). In this report, we first define the SVP, followed by its approximate variation, γ-Approximate
SVP, in Section 2, followed by an overview of the well-known Lenstra-Lenstra-Lovász (LLL) Algo-
rithm in Section 3. Then, we will propose a heuristic which adds to the power of the LLL Algorithm
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and explain it in Section 4. We describe the experiments that we’ve run to test this heuristic in
Section 5, followed by the results of the experiments and their inferences in Section 6.

2 Shortest Vector Problem (SVP)

The Shortest Lattice Vector Problem has a simple statement: Given a Lattice L, find the smallest
non-zero lattice vector in L. For a Lattice L, it can be stated as:

λ = v ∈ L\{0} , such that ||v|| is minimum

Finding the smallest vector is an NP-hard problem.

Another version of this problem is Approximate SVP.

2.1 γ Approximate SVP

Given a lattice L with basis B = {b1,b2, . . . ,bn}, bi ∈ Rn, find a non-zero vector v ∈ L such that
0 < ||v|| ≤ γ||λ||, where λ is the shortest vector in the lattice. For certain values of γ, it can be

shown to be solvable in polynomial time. For γ = 2
n−1
2 , the LLL Algorithm yields a polynomial

time solution.

3 Lenstra–Lenstra–Lovász (LLL) ALgorithm[2]

DEFINITION: Given n linearly independent vectors b1,b2, . . . ,bn ∈ Rn, their Gram-Schmidt

orthogonalization is defined by b∗i = bi −
i−1∑
j=1

µi,jbj , where µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

Let a Basis be B = {b0,b1, . . . ,bn−1} and its Gram-Schmidt Orthogonal(GSO) basis be B∗ =
{b∗0,b∗1, . . . ,b∗n−1}.

The GSO coefficients are: µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

This basis B is said to be LLL-Reduced if it satisfies the following conditions for some real number
δ ∈ (0.25, 1]:

1. µi,j ≤ 0.5 ∀ valid values of i, j. (Size reduced)

2. δ||b∗k−1||2 ≤ ||b∗k||2 + µ2k,k−1||b∗k−1||2 for 1 ≤ k < n (Lovász condition)

In an LLL-Reduced Basis, the following holds:

||b0|| ≤
( 2
√

4δ − 1

)n−1
||λ||, where λ is the shortest non-zero vector in L

Now, the LLL Algorithm takes a Lattice Basis B′ as input, and converts it into a basis B such
that B is LLL-Reduced and B generates the same lattice as B′. Hence, we can also see this
as follows: for an input basis B′, the LLL Algorithm returns a vector b0 ∈ B which satisfies
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||b0|| ≤
( 2
√

4δ − 1

)n−1
||λ||, that is, it returns a vector b0 which is the solution to the γ-Approximate

SVP with the approximation factor being

(
2

√
4δ − 1

)n−1
.

When the founders of this algorithm gave this result, they used the value δ = 3
4 . For this value

of delta δ, we get the γ = 2
n−1
2 approximation.

Note that, higher the value of δ, the better is the approximation. However, the time taken by the
algorithm increases as the value of δ increases. The exact relation is:

Time ∝
1

log(1δ )

4 Improvements to LLL

We put forward a heuristic that improves the performance of the LLL algorithm. Algorithm 1
describes this heuristic at a high level. It uses the helper function reduce, which is defined in
Section 4.1, and another helper function converged, defined in Section 4.2.

We know that the LLL Algorithm reduces the given Lattice Basis into another Basis which
is LLL-Reduced. Now, if we add some changes into this output basis such that it is no longer
LLL-Reduced, another run of the LLL algorithm may give us a basis which has an even shorter
vector than before.

What the reduce function does is that it ‘dis-balances’ the Basis so that it is not LLL-Reduced
anymore. Moreover, it changes the basis in such a way that all the basis vectors are at a bigger
angle from each other than before. This is indeed a desirable property to ensure that a Lattice Ba-
sis has short vectors in it. We describe what the reduce function does in the proceeding subsection.

Indeed we see that when we run the LLL Algorithm on this dis-balanced Basis once again, that
run gives an even shorter of the lattice than before. We keep on doing this until this dis-balancing
doesn’t give any better results. At that point the algorithm is said to have converged.

Algorithm 1 Modified LLL

Input: Lattice Basis B = [b0,b1, . . . ,bn−1]
1: B′ ← LLL(B)
2: while NOT Converged(B′,B) do
3: B← B′

4: B′ ← reduce(B)
5: B′ ← LLL(B′).
6: end while
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4.1 REDUCE Function

Suppose we’re given an n-dimensional lattice basis B, in which the last vector, bn−1, is fixed. Our
goal is to find an alternating basis B′ of the same lattice which contains bn−1, but the hyperplane
formed by the remaining n− 1 vectors of B′ has a normal that makes a smaller angle with bn−1 as
compared to the hyperplane formed by the remaining vectors in B.

Intuitively, we can do this by subtracting a certain (integral) component of bn−1 on each of the
remaining vectors from themselves. The way we proceeded is as follows: for all i = 0, 1, . . . , n− 2,
do the following:

1. We have a fixed vector bn−1 and a currently chosen vector, say bi. The remaining n − 2
vectors form a vector space S. Find out the perpendicular component vectors of bn−1 and bi
on S, and call these gn−1 and gi respectively.

2. Update bi as follows:

bi = bi −
⌊ 〈gn−1,gi〉
〈gn−1,gn−1〉

⌉
× bn−1

What’s happening here is the following: we find the projection-ratio of gi on gn−1, round it
off to the nearest integer to get an integer η, multiply the rounded off value to bn−1 to get
the vector ηbn−1, and subtract this from bi.

Now, what the reduce function does is as follows: it fixes bn−1 and modifies the aforementioned
hyperplane as mentioned in the above two steps. Then, it goes into the modified sub-lattice of these
new n − 1 vectors, fixes bn−2 and changes the sub-lattice formed by the remaining n − 2 vectors.
Its keeps on going down recursively until b0 is the fixed vector.

Algorithm 2 describes how we get the new hyperplane, and Algorithm 3 describes the reduce
function.

4.2 Convergence

We mentioned before that when the dis-balancing provided by the reduce function doesn’t give
any better results, we break from the while loop in Algorithm 1, and that is when we say that
the algorithm has converged. Now, one way of seeing this is that if a particular step doesn’t give
a shorter smallest vector, then we have converged. However, in our testings, we found out that

Algorithm 2 reduce-perp

Input: Lattice Basis B = [b0,b1, . . . ,bn−1]
1: for i in 0 . . . (n− 2) do
2: S = plane(b0,b1, . . . ,bi−1,bi+1, . . .bn−2) //Sub-plane formed by the input vectors

3: gi = perp-comp(bi, S) //perpendicular component of bi on S
4: gn−1 = perp-comp(bn−1, S)
5: η = RoundOff

(
dotp(gi,gn−1)/norm-square(gn−1)

)
6: bi = bi − η × bn−1
7: end for
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Algorithm 3 reduce function

Input: Lattice Basis B = [b0,b1, . . . ,bn−1]
1: m← n
2: while m ≥ 0 do
3: B′ ← B[0 : m]
4: B′ ← reduce-perp(B′). //See Algorithm 2

5: m← m− 1.
6: end while

checking the smallest vector’s norm alone is not enough. It might happen that the shortest norm
in the Basis doesn’t change, but other vectors might do, which gives improvements in a later step.
Hence, we need to check the other vectors in the Basis as well.

An easy way to incorporate all the norms into consideration without adding any major overheads
is to just compare the change in sum of norms of all the vectors between the previous Basis B and
the new Basis B′. Algorithm 4 describes this simple step of both checking the shortest norm and
the sum of norms.

Algorithm 4 converged function

Input: New Basis B′ = [b′0,b
′
1, . . . ,b

′
n−1], Old Basis B = [b0,b1, . . . ,bn−1]

1: s← shortest-norm(B) //returns the norm of the shortest vector in the input Basis
2: s′ ← shortest-norm(B′)
3: sum← sum-norms(B) //returns the sum of norms of all vectors in the input Basis
4: sum′ ← sum-norms(B′)
5: if s′ > s AND sum′ > sum then
6: return False
7: else
8: return True
9: end if

4.3 Expected Improvements in Results

The shortest vector found using LLL Algorithm depends upon the δ used in the Lovász Condition.
Higher the delta, smaller is the resultant vector. However, the time taken by the algorithm increases
as the value of δ increases.

It is expected that the for a particular value of δ, the modified LLL Algorithm will give a way
smaller shortest vector than the original LLL Algorithm. Moreover, the time it takes to give this
smaller vector should be less than the time taken by the original LLL with higher values of delta.
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5 Experiments

The two goals of the experiment are to test the modified LLL in these two conditions:

1. Original LLL vs Modified LLL with same δ = 0.251: Both the Algorithms run till termination.

2. Original LLL with δ = 0.9 vs Modified LLL with δ = 0.251: The former runs till termination,
while the latter either stops when it finds the smallest vector found by the former, or if it
converges before finding that vector.

Given a Lattice Basis, we compare the performance of original and modified conditions in both
the experiments. In the first one, the primary concern is that the modified LLL should show
improvement in the resultant smallest vector, while in the latter, the concern is to get the same
smallest vector with the modified version taking lesser time.

The Lattice basis used in these experiments were of this type:

x0 0 0 0 . . . 0
x1 1 0 0 . . . 0
x2 0 1 0 . . . 0
x3 0 0 1 . . . 0

. . . . . . .
. . .

xn−1 0 0 0 . . . 1


=



bT0
bT1
bT2
bT3
·
·

bTn−1


The zeroth coordinate of bi is xi, and for i 6= 0, the ith coordinate of bi is 1. All the other
coordinates are 0 ∀ i. For all i, xi had approximately 240 digits.

These tests were run on 600 different Lattices. Of these 600 Lattices, there were 100 Lattices each
of dimensions 20, 22, 24, 26, 28,& 30. All these Lattices had basis of the form mentioned above.

5.1 Code

This experiments were carried out in C++ using the gmpxx library. This library provides various
functions to handle very large numbers, be it integers, rationals, or floating point numbers. This
helped in doing arithmetic operations involving the 240 digit xi mentioned above.

The code used to run this experiment can be found here: https://github.com/namanv3/Lattices.
This repository has a detailed readme describing all the files in the repo, and has all the instructions
for running and testing the code.

5.2 Lattice Basis Instances

These Lattice Bases were created using the generator from the SVP Challenge Website:
https://www.latticechallenge.org/svp-challenge/
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6 Results of The Experiment

6.1 Original LLL vs Modified LLL with same δ = 0.251

As expected, the improved LLL Algorithm gives huge improvements in the resultant shortest vector.
The table below quantifies how much better the improved version performs and how much more
time in takes on average.

In the table below, ηoriginal means the shortest norm found by the original LLL Algorithm and
ηimproved means the shortest norm found by the modified LLL Algorithm.

Table 1: Comparison of Original LLL vs Modified LLL with same δ = 0.251.

Dimension Average Improvement Average Speed-down(
ηoriginal

ηimproved

) (
average time taken by original LLL

average time taken by modified LLL

)
20 17.602 0.300

22 30.100 0.262

24 50.245 0.222

26 73.363 0.188

28 99.461 0.172

6.2 Original LLL with δ = 0.9 vs Improved LLL with δ = 0.251

In this test, say the Original LLL with δ = 0.9 returns v as the shortest vector it could find in
the Lattice formed by the input basis. Our objective is to check if the modified LLL Algorithm
with δ = 0.251 can find v in lesser time than the original LLL Algorithm. Hence, we add another
condition for termination of the original LLL for this test. The improved LLL Algorithm terminates
in these two cases:

1. It finds the smallest vector found by the original LLL with δ = 0.9.

2. It is unable to find that vector because it converges before doing so.

These conditions for termination help in observing as to how much speedup the improved LLL
gives with weaker δ value as compared to the original LLL with stronger δ.

The table below quantifies how much better the improved version performs. Success percentage
refers to the number of times the improved LLL was able to find the vector found by the original
LLL with stronger δ.

Table 2: Comparison of Original LLL with δ = 0.9 vs Improved LLL with δ = 0.251

Dimension Success Percentage
Average Speedup Average Ratio of Shortest

Overall Successful Cases Norms in Failures

20 90% 2.590 2.620 1.065

22 80% 2.530 2.545 1.263

24 74% 2.399 2.392 2.200

26 59% 2.233 2.247 2.059

28 46% 2.099 1.947 9.431
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7 Conclusions and Further Improvements

The improved LLL algorithm shows promising results. It greatly increases the power of lower δ-
valued LLL algorithm, and while increasing the power, it takes lesser time than higher δ-valued
pure LLL algorithm.

We also observe that as the number of Basis vectors increase (that is, as the dimensions of the
Lattice increase), the modified LLL Algorithm performs even more better than the original LLL
algorithm for the same δ value.

On the path to reach this modification to the LLL Algorithm, we tried various other heuristics
as well, each having a particular intuition or the other. That being said, there are many ways in
which the work done here can be built upon.

1. Firstly, we can find a more robust criteria for convergence.

2. Secondly, there are many libraries heavily system-optimised implementations of the LLL
Algorithm available for various languages. Implementing the reduce function at such levels
of optimisation can certainly provide a clearer picture as to how much less time does the
modified LLL take.

Appendix: Code Snippets

Below are the implementations of the algorithms defined in this report. These functions are of the
class Lattice.

1 c l a s s La t t i c e {
2 pr i va t e :
3 i n t n , m;
4 pub l i c :
5 mpz c lass o r i g i n a l [MAXSIZE ] [MAXSIZE ] ; //MAXSIZE i s a marco va r i ab l e
6 mpz c lass B[MAXSIZE ] [MAXSIZE ] ;
7 Lat t i c e ( i n t rows , i n t c o l s ) ;
8 .
9 .

10 .
11 mpz c lass s h o r t e s t ( ) ;
12 mpz c lass sum of norms ( ) ;
13 void LLL ( i n t deltaNum , i n t deltaDen ) ;
14 void reduce perp ( i n t numRows , i n t i ) ;
15 void reduce ( i n t numRows) ;
16 void reduce main ( ) ;
17 void newLLL ( i n t deltaNum , i n t deltaDen ) ;
18

19 } ;

In all the snippets below, various functions are used that are not a part of the Lattice class,
but have been defined in functions.h file in the github repository mentioned in Section 5.1. All
the functions can’t be written here as the report might get too long, so we’ve described the relevant
functions in the comments.
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A1. REDUCE-PERP

1 void La t t i c e : : r educe perp ( i n t numRows , i n t i ) {
2 mpz c lass val , temp [MAXSIZE ] ;
3 mpq class proj , num, den ;
4 mpq class G[numRows ] [MAXSIZE] , qtemp [m] ;
5

6 gso (B, G, numRows , m) ; // G has the GSO Bas i s o f B
7

8 // p r o j e c t i o n o f B[ numRows−1] on G[numRows−2] s to r ed in qtemp
9 p r o j e c t i o n (B[ numRows−1] , G[ numRows−2] , qtemp , m) ;

10 //sum of G[numRows−1] and qtemp sto red in G[numRows−1]
11 addvector (G[ numRows−1] , qtemp , G[ numRows−1] , m) ;
12

13 num = dotp (G[ numRows−1] , G[ numRows−2] , m) ;
14 // r e tu rn s | |G[numRows−1 ] | |ˆ2
15 den = norm(G[numRows−1] , m) ;
16 // takes a r a t i o n a l number as input and rounds i t to the nea r e s t i n t e g e r
17 va l = roundtoInt (num ∗ mpq class ( den . get den ( ) , den . get num ( ) ) ) ;
18 // mu l t i p l i e s the i n t e g e r va l to the vec to r B[ numRows−1] and s t o r e s the product

in temp
19 intmult (B[ numRows−1] , val , temp , m) ;
20 // sub t r a c t s B[ numRows−2] by temp , s t o r e s the r e s u l t in B[ numRows−2]
21 subvector (B[ numRows−2] , temp , B[ numRows−2] , m) ;
22 }

A2. REDUCE

1 void La t t i c e : : reduce ( i n t numRows) {
2 mpq class d i s t , va l ;
3

4 f o r ( i n t j = 0 ; j < 2 ; j++) {
5 f o r ( i n t i = 0 ; i < numRows−1; i++) {
6 swapArr (B[ numRows−2] , B[ i ] , m) ;
7 reduce perp (numRows , i ) ;
8 swapArr (B[ numRows−2] , B[ i ] , m) ;
9 }

10 }
11 re turn ;
12 }
13

14 void La t t i c e : : reduce main ( ) {
15 f o r ( i n t i = 0 ; i < n−1; i++) {
16 reduce (n−i ) ;
17 }
18 re turn ;
19 }
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A3. Modified LLL

1 void La t t i c e : : newLLL ( i n t deltaNum , i n t deltaDen ) {
2 mpz c lass shortnorm , prev ;
3 mpz c lass new sum , prev sum ;
4 shortnorm = sho r t e s t ( ) ;
5

6 LLL(deltaNum , deltaDen ) ;
7

8 shortnorm = prev = sho r t e s t ( ) ;
9 prev sum = sum of norms ( ) ;

10 whi le (1 ) {
11 reduce main ( ) ;
12

13 LLL(deltaNum , deltaDen ) ;
14

15 shortnorm = sho r t e s t ( ) ;
16 new sum = sum of norms ( ) ;
17 i f ( new sum >= prev sum && shortnorm >= prev ) {
18 cout << ”No improvement , break ing from newLLL . . ” << endl ;
19 break ;
20 }
21 prev sum = new sum ;
22 prev = shortnorm ;
23 }
24

25 }
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