
Stronger Variants of KDM Security

Thesis submitted by

Dhairya Gupta
2019CS50428

under the guidance of Prof. Venkata Koppula, Indian Institute of
Technology Delhi

in partial fulfilment of the requirementsfor the award of the degree of

Bachelor and Master of Technology

Department Of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY DELHI

June 2024

THESIS CERTIFICATE

This is to certify that the thesis titled Stronger Variants of KDM Security, submitted

by Dhairya Gupta (2019CS50428), to the Indian Institute of Technology, Delhi, for the

award of the degree of Bachelor and Master of Technology, is a bona fide record of the

research work done by him under our supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. Venkata Koppula

Professor

Dept. of Computer Science

IIT-Delhi, 600 036

ACKNOWLEDGEMENTS

First and foremost, I would like to express profound gratitude towards my thesis advisor,
Prof. Venkata Koppula, for their patience, enthusiasm and vast knowledge throughout
this journey, His insights, dedication and feedback towards me. He consistently shaped my
ideas and nudged me in the right direction whenever I needed it.

I am also immensely greatful to Mahesh Sreekumar Rajasree for his creative insights,
long and fruitful discussions and constructive feedback which greatly improved the quality
of my work.

I am also thankful to my friends and colleagues Aman Verma and Abhinav Kumar
for our collaborative discussions, late-night study sessions and making the past 5 years of
college fun and memorable.

Finally, I am forever indebted to my parents, for their constant encouraging words and
unwavering belief in me. Their endless support and dedication to my education laid the
foundation upon which I built my personal and academic achievements.

i

ABSTRACT

We present new construction for Key Dependent Message (KDM) secure Public Key Encryp-
tion(PKE) schemes in the Incompressible[JWZ22, BDD22] setting as well as leakage-resilient
KDM in the presence of adversarial bounded leakage of the bits of the secret key[AGV09]
via Hash Proof Systems[CS01, NS09]. In particular, we present the following constructions:

• Incompressible KDM PKE in random oracle(RO) model: We show a construc-
tion for incompressible KDM SKEs in RO and using incompressible KDM SKE and a
CPA-secure PKE scheme, we show a construction for incompressible KDM PKEs for
any general class of functions

• Transformation to Incompressible KDM CCA2 secure: We construct an In-
compressible KDM secure CCA encryption scheme via a Non-Interactive Zero Knowl-
edge proving scheme[GOS12], a one-time secure Incompressible projective-KDM SKE[KKRS24],
an incompressible CCA secure PKE[BDD22], an incompressible CPA secure PKE[JWZ22]
and a Garbling scheme[Yao86]

• Leakage Resilient - KDM from Hash Proof Systems We show a construction for
a homomorphic leakage-resilient smooth Hash Proof System[CS01, Wee15] from d-LIN
assumptions, and construct a leakage-resilient KDM public key encryption scheme via
homomorphic LR-smooth HPS for the class of affine functions over the bits of the
secret key.

ii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Our Results: . 5

2 Technical Overview 6

2.1 Incompressible KDM encryption in the RO model 6

2.2 Incompressible KDM CCA . 8

2.3 LR-KDM . 9

2.3.1 Leakage-Resilient Hash Proof System 10

2.3.2 Leakage-Resilient Key-Dependent Message PKE Security. 10

3 Preliminaries 12

3.1 Preliminaries and Notations . 12

3.1.1 Function Classes . 12

3.1.2 Average Min-Entropy . 12

3.1.3 Strong Average Min-Entropy Extractor 13

3.1.4 Leftover Hash Lemma . 13

3.1.5 Non-Interactive Zero Knowledge proof systems (NIZK) 13

3.1.6 Garbling schemes . 14

3.1.7 Symmetric and Public Key Encryption 14

3.2 Variants of Key-Dependent Message (KDM) Security 16

3.2.1 KDM SKE encryption . 16

3.2.2 KDM PKE encryption . 17

3.2.3 KDM Incompressible SKE encryption. 17

iii

3.2.4 KDM Incompressible PKE Security. 18

3.2.5 Leakage-Resilient Key-Dependent Message PKE Security. 18

4 KDM Incompressible encryption in the random oracle model 20

5 Incompressible KDM CCA 27

6 LR-KDM from Hash Proof Systems 43

6.1 Definitions . 43

6.1.1 Leakage-Resilient Hash Proof System 43

6.1.2 Leakage-Resilient KDM PKE . 44

6.2 Constructing LR-smooth homomorphic HPS from DDH 44

6.3 From LR-smooth HPS to LR-KDM . 46

Chapter 1

INTRODUCTION

1.1 Overview

Symmetric Key Encryption: We trace back the earliest works of cryptography to
symmetric key encryption (SKE), which allowed for some information to be securely hidden
in a cipher using a "secret" key which was necessary to later decrypt the information. In
symmetric key encryption, the sender encrypts the message and the receiver decrypts the
message with the same "secret" key.

The earliest symmetric key encryption schemes can be traced back to ancient times, such as
substitution ciphers where the secret information was the mapping of letters from plaintext
to ciphertext. As time progressed and the need for stronger encryption schemes grew,
stronger encryption schemes were discovered. The earliest groundbreaking contribution to
modern day symmetric encryption was the One Time Pad, which is theoretically unbreakable
when the key is completely random and used only once. However, it has many practical
limitations such as large key sizes and non-reusability. In the computing age, SKE schemes
such as DES and AES had widespread applications for systems and real-world protocols and
various SKE schemes continue to be used to this day.

Public Key Encryption: However, with technological advancements, the limitations of
symmetric key encryption became apparent. Managing a large collection of secret keys be-
came impractical for communicating parties as well as it was cumbersome to ensure the
secure distribution of keys, which was necessary for sharing symmetric keys between in-
tended parties. This led to the rise of public key encryption(PKE) schemes such as RSA
encryption[RSA78] and Elliptic Curve Cryptosystems. Public key encryption schemes no-
tably had a pair of keys (pk, sk) where pk was the public key which did not need to be
hidden from malicious parties and could be used to encrypt any message, while decryption
of encrypted messages could only be done using a secret key sk. This allowed for secure
communication across an insecure channel even if the sending party did not have access to
sk.

These schemes are conventionally secure against Chosen Plaintext Attacks. We briefly
mention the simplest formal notion for secure encryption for public key and symmetric key
encryption.

CPA-SKE secure schemes A scheme (Enc,Dec) is said to be CPA-SKE secure if for a key
s generated from some distribution S, on an adversary seeing an encryption for any message

1.1 Overview 2

Enc(s,m), it cannot learn any (significant) amount of information about the underlying
message. We define this more formally through the following mathematical game: For
any pair of messages (m0,m1) chosen by the adversary, if we choose a message uniformly
randomly from (m0,m1) and show the adversary its encryption: Enc(s,m), the adversary
cannot correctly guess with probability more than 1

2
+ some negligible quantity the message

which was encrypted. We can also consider a multi-query version of this game

CPA-PKE secure schemes A scheme (Enc,Dec) is said to be CPA-PKE secure if for a
key-pair (pk, sk) generated from some distribution, seeing an encryption for any message
Enc(pk,m) cannot help the adversary learn any (significant) amount of information about
the underlying message. We define this more formally through the following game: Given the
public key pk associated with (Enc,Dec) [which in turn allows the adversary to calculate the
ciphertexts to multiple message queries of its choice] and for any pair of messages (m0,m1)

chosen by the adversary: On being given the encryption to one of them chosen randomly,
the adversary still cannot guess with probability significantly better than 1

2
, which message’s

encryption was given

CCA security Most of the encryption notions talked about above ensure that the en-
cryption is secure as long as the adversary can encrypt plaintexts of his choice but may be
vulnerable in cases when the adversaries can manipulate ciphertexts and view their decryp-
tions. During the 1990s, Bleichenbacher [Ble98] was able to show an attack on the RSA
encryption used in SSL/TLS. By sending carefully modified ciphertexts to the SSL server
and getting notified of whether the server decrypted successfully, Bleichenbacher was able to
obtain the session key and hence, break the security of RSA. Such attacks which were able
to exploit vulnerabilities during decryption, as well as ongoing constructions in literature at
the time, gave rise to the stronger security notion of CCA secure encryption[NY90, RS91].

We define the CCA notion for public key encryption schemes. Note that CCA-PKE security
is strictly stronger than CPA-PKE which is easy to see from its formal description. Formally,
we describe CCA-PKE security through the following game: the adversary is given access
to a decryption oracle throughout the CCA-PKE game, which it can query without any
restrictions(assuming a computational adversary can make only polynomially many queries).
The remainder of the game is identical to the CPA-PKE game, the only difference being
access to the decryption oracle. A scheme (Enc,Dec) is a CCA-secure PKE if in this game,
the adversary cannot guess the final bit correctly with probability more than 1

2

KDM secure encryption We have seen that the most common notion of secure encryp-
tion and arguably the simplest in cryptography literature is semantically secure encryption
against standard plaintext attacks(CPA-secure)[BDJR97, GM84]. Over the years, encryp-
tion schemes against increasingly stronger adversaries have been studied such as the notion
of CCA which arose due to vulnerabilities in CPA. Nonetheless, most widely used notions
of semantically secure encryption are restricted to the setting where the plaintext message

© 2024, Indian Institute of Technology Delhi

1.1 Overview 3

being encrypted is independent of the secret decryption key. However, there has been a
growing interest in studying the case where the message being encrypted is indeed depen-
dent on the secret decryption keys. Such notions become necessary in increasingly complex
systems, such as disk encryption schemes, where the secret decryption key is naturally a
part of the information being stored on disk. A widely used example was the BitLocker
disk encryption utility used on Windows Vista. In accordance with commonplace literature
terminology, we call such encryption schemes as KDM-secure. KDM security is also a crucial
building block in constructions for various cryptographic primitives such as "bootstrapping"
in fully homomorphic encryption[Gen09].

Note that a PKE scheme Formally, a SKE scheme is KDM-CPA secure if instead of the
encryption queries encrypting messages(this is the case of CPA secure SKE) as queried by
the adversary, the encryption queries return encryption of a certain function of the secret
key. To draw a parallelism between CPA and KDM-CPA SKE, we replace all encryption
queries m which returned Enc(s,m) with encryption queries f which returns Enc(s, f(s)).
Similarly, for PKE vs KDM-PKE CPA, instead of querying for m and getting Enc(pk,m),
we query for f and in return get Enc(pk, f(sk)). Any KDM-CPA secure scheme is also a
CPA secure scheme, simply because we can choose the function f(sk) to return a constant
message m, which is equivalent to querying for the regular encryption of m.

The earliest construction for a KDM secure encryption scheme was the work on anony-
mous credential systems[CL01] which looked into encrypting a shifted set of n secret keys
(sk1, sk2 . . . skn) under their own public keys (pk1, pk2, . . . pkn) as the following
ct = (Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1)). Similarly, [BRS02] proposed the earli-
est construction for KDM SKE. Both these constructions are in the Random Oracle model.
Boneh et al[BHHO08] gave the first known construction of KDM secure PKE from DDH
assumptions. While the notions of KDM secure encryption and CCA might seem unrelated,
they are not as indpendent as they seem to be. A recent interesting work which connects the
two. A recent work by Koppula, Waters[KW18] has showed a transition from CPA secure
PKE to CCA secure PKE via a stronger variant of regular PRGs known as Hinting PRGs.
A similar later work by Kitagawa, Matsuda and Tanaka [KMT19] showed how to construct
CCA secure schemes from CPA secure schemes via a KDM secure SKE scheme. We also
have constructions for KDM-CCA secure PKE schemes via KDM-CPA secure SKEs[Wee15].
Here a KDM-CCA PKE is a scheme which satisfies CCA security where the messages in
encryption queries may also be functions of the secret key.

Incompressible Encryption Another seemingly unrelated yet fascinating line of work in
cryptography literature deals with the notion of "incompressible" encryption[Dzi06, JWZ22].
In the modern age, even in the presence of comprehensive measures such as Multi-Factor Au-
thentication and robust encryption schemes, targeted and increasingly sophisticated cyber-
attacks as well as poor management of private credentials by institutions often leave user
credentials vulnerable[Gof23]. This compels us to ask the following question: Is it possible

© 2024, Indian Institute of Technology Delhi

1.1 Overview 4

that the encrypted messages remain secure even when the secret decryption key is leaked at
some later point in time? Clearly this is impossible in the standard model as the adversary
can simply store the ciphertext in its entirety and later use the decryption key to decrypt
to the original message. One might think of a "store and decrypt later" adversary which
stores the ciphertext and waits for the secret decryption key to leak. However, in real-world
scenarios, it can be prohibitively expensive and inconvenient for the adversary to store large
ciphertexts for potentially large periods of time while the adversary waits for the decryption
key to leak. In the presence of high-speed internet and gigantic bandwidth and transmission
capabilities, several terabytes of data being received and transmitted by the user in a given
day exacerbates and highlights the long-term storage bounds of computational adversaries
even further, making such a notion of security sensible and practical. Formally, we define a
scheme to be incompressible if an adversary is not able to learn any information significantly
better than random guessing assuming that the adversary can only store a bounded number
of bits of information for any encrypted ciphertext[JWZ22]

The earliest works on incompressible Encryption was introduced via the all-or-nothing en-
cryption framework put forward by Rivest[Riv97] which dealt with the block encryption
framework. The property of all-or-nothing security was that determining information about
any message block necessarily required decrypting all ciphertext blocks, which does capture
the notion of the ciphertext being incompressible. Dziembowski[Dzi06] defined the notion
of Incompressible SKEs and gave a construction using randomness extractors. [JWZ22] in-
troduced Incompressible CPA-PKE constructions with similar message and ciphertext sizes.
[BDD22] extended their work to Incompressible CCA-PKE.

Leakage-Resilient Encryption Finally, we also mention the notion of security in the
presence of leakage of bits of the secret key s. We call a SKE scheme Leakage-Resilient if for
some adversarially chosen leakage function h with function output size ≤ S, the SKE scheme
is CPA secure even when the adversary has h(s). A similar notion for leakage-resilience can
be defined for a PKE. [AGV09] Akavia et al showed how to construct leakage-resilient PKE
encryption where the leakage function was chosen by the adversary as described in the
definition for Leakage-Resilience PKE game above. Naor and Segev’s work [NS09] showed
how to build leakage resilient encryption schemes via hash proof systems.

We are especially interested in Leakage-Resilient secure encryption schemes while we study
Incompressible encryption because Leakage-Resilient cryptography is, in some sense, a dual
of Incompressible cryptography. For example, consider the case of public key encryption:
In LR-PKE, the adversary sees the following in its view after making an encryption query
and receiving ct :(h(sk), ct) where h is adversarially chosen and |h(sk)| < S for some bound
S. Compare this with incompressible encryption: After an encryption query whose output
is ct: the final adversary’s view (after sk is leaked) is (sk, f(ct)) where f is adversarially
chosen and |f(ct)| < S for some bound S. Thus, the leakage-resilient security is limiting the
information seen for sk, while incompressible schemes bound the information seen for ct.

© 2024, Indian Institute of Technology Delhi

1.2 Our Results: 5

1.2 Our Results:

While KDM security ensures the robustness of encryption schemes even when the plaintext
messages depend on the secret keys, incompressible encryption mandates that an adversary
must store the entire ciphertext to gain any meaningful information upon key leakage. This
thesis explores the novel intersection of these two notions. Along with incompressible en-
cryption, we also look into the dual analogue of incompressibility which is Leakage-Resilient
encryption. Our work is a part of a series of constructions in the incompressible encryption
regime. We would like to mention that the current thesis is one of many works in the incom-
pressible secure encryption domain. Particularly, we mention that recent work by Koppula
et al[KKRS24] has shown the existence of constructions of Incompressible KDM secure en-
cryption in the standard model for both SKE (via randomness extractors) and PKE(via
Incompressible KDM SKE). Note that these constructions are KDM secure for circuits of
projective functions or a-priori bounded size. We provide the following contributions in our
thesis:

• Incompressible KDM SKE in the Random Oracle model: We construct an
incompressible KDM SKE scheme in the Random Oracle Model using no other primi-
tives over the universal class of functions. Most KDM schemes in the standard model
are KDM secure w.r.t a certain class of functions. However, in the Random Oracle
Model, our scheme is Incompressible SKE secure for any class of functions with some
fixed input and output size

• Incompressible KDM PKE in the Random Oracle model: In the Random
Oracle model, using a standard CPA PKE scheme and an incompressible KDM SKE
scheme(as mentioned above) can be used to build an incompressible KDM PKE scheme
which is KDM secure for any class of functions with some fixed input and output size.

• Incompressible KDM CCA: We construct an Incompressible KDM secure CCA
encryption scheme via a Non-Interactive Zero Knowledge proving scheme, a one-time
Incompressible projective-KDM SKE, an incompressible CCA secure PKE, an incom-
pressible CPA secure PKE and a Garbling scheme. Firstly, we look at each of these
primitives: NIZKs for NP-languages can be obtained through various assumptions such
as trapdoor permutations[Gro10] and d-LIN assumptions[GOS12]. Recent work by
Koppula et al[KKRS24] has shown the existence of a projective KDM Incompressible
SKE via a modification to Dziembowski’s scheme[Dzi06] for constructing Incompress-
ible SKEs. Recent works in incompressible cryptography give us rate-1 CPA secure
Incompressible PKE[JWZ22] and CCA secure incompressible PKE[BDD22] schemes.
We also use Yao’s garbled circuits[JW16]. Our scheme is a modification of the work
on CPA-to-CCA transformation of KDM security[KM19a]

• LR-KDM from Hash Proof Systems: We construct a LR-smooth HPS from d-
LIN assumptions which satisfies homomorphism, leakage-resilient smoothness. Then,
we construct a Leakage-Resilient KDM secure Public Key Encryption scheme for the
class of affine functions over the bits of the secret key. Our ideas are based on hash
proof system[CS01] and the transformation from HPS to KDM[Wee15]

© 2024, Indian Institute of Technology Delhi

Chapter 2

Technical Overview

In this chapter, we give an outline of the constructions and their security proofs in brief.
In the first section, we talk about construct Incompressible KDM PKE via Incompressible
KDM SKE in the RO model, as well as discuss the construction for Incompressible KDM
SKE in the RO model. In the second section, we discuss our construction for Incompressible
KDM CCA via weaker Incompressible primitives and NIZKs. Finally, in section 3, we discuss
the construction of Leakage-Resilient Smooth Hash Proof Systems from DDH and LR KDM
secure encryption via Leakage-Resilient Smooth Hash Proof systems

2.1 Incompressible KDM encryption in the RO model

Recall that the a construction in RO model has one or more deterministic functions that the
adversary has oracle access to and that behave like truly random functions. We note that
our construction in RO is KDM secure for all classes of functions without any restrictions.

Define two random oracles G : {0, 1}lk × {0, 1}poly(λ) −→ {0, 1}n, H : {0, 1}lk × {0, 1}n −→
{0, 1}poly(λ). We claim the following encryption scheme is a KDM Incompressible SKE:

• KeyGen(1λ, 1S) : Sample a uniform key k ∈ {0, 1}poly(λ). Return k.

• Enc(k,m) : Choose a random r ∈ {0, 1}poly(λ). Let d = G(k, r) ⊕ (m). Let c =
H(k, d)⊕ r. Return ct = (c, d)

• Dec(k, ct = (c, d)) : Compute r = H(k, d)⊕ c. Compute m = G(k, r)⊕ d. Return m.

We concisely define the (one-time) KDM Incompressible SKE game below:

• The challenger samples secret k and a challenge bit b.

• It receives f0, f1 from A1 and auxiliary information

• Challenger sends ct = Enc(k, fb(k)) to A1, receives st from A1 and sends (st, f0, f1, k)
and auxiliary information to A2 which guesses the final bit b

Here we describe how the hybrids change

2.1 Incompressible KDM encryption in the RO model 7

1. In hybrid G0, we calculate Enc(k, fb(k)) as ct = (d = G(k, r)⊕ fb(k), c = H(k, d)⊕ r)

2. In hybrid G1, we assume that A1 never queries H(k, x) or G(k, x). This is because H
and G are random functions, hence the output (c, d) has no information about k by
the security of one-time pad in the view of A1.

3. In hybrid G2, we switch to a table simulating the function and assume that c and d
are sampled randomly, and set G(k, r) = d⊕fk and H(k, d) = c⊕ r . The distribution
in G1, G2 are identical

4. In hybrid G3, we assume H(k, d) must be queried before any query to G(k, r) is made
by A2(which has the key k). This follows because if G(k, r) is queried before, then
the adversary A2 was able to guess r without accessing the only place where any
information about r is stored which is the table entry for H(k, d) = c⊕ r.

5. In hybrid G4, since G(k, r) has not been queried, d is information-theoretically hidden
from the adversary’s view. Hence the query H(k, d) cannot be made with a non-
negligible probability by A2

6. Finally, we have in G4 that the output (c, d) is completely random as no query of the
form H(k, x), G(k, x) has been made. Hence, b is information theoretically hidden in
G4

The above sequence of hybrids show that the above scheme is KDM Incompressible SKE
secure. Similarly, the KDM Incompressible PKE game is analogous to the KDM incompress-
ible SKE game. Below we show the construction for a KDM Incompressible PKE scheme
in RO via KDM Incompressible SKE and CPA-PKE:

• KeyGen(1λ, 1S) : Sample (pk, sk)← PKE′.KeyGen′(1λ). Return (pk, sk)

• Enc(pk,m) : Sample uniformly random r ← {0, 1}poly(λ). Compute c← PKE′.Enc(pk, r)
and d← KdmIncSKE.Enc(H ′(r),m). Return ct = (c, d)

• Dec(sk, ct = (c, d)) : Compute r = PKE′.Dec′(sk, c). Return m = KdmIncSKE.Dec(H ′(r), d)

We describe how the hybrids change in the security proof for the above PKE scheme

1. In G1, we assume that A1 does not query H ′(r) where r is the randomness sampled by
the challenger. Clearly d is independent of r as the output of H ′(r) is independent of
r. Hence, if I can distinguish between G0, G1, I must be able to get information about
r via PKE’, which violates the CPA security of PKE

2. In G2, replace H ′(r) with a random k, as they are identical.

3. Now, if an adversary can win in G2 with non-negligible advantage, it must be due to
d, as c had no information about r. But KdmIncSKE is a secure KDM Incompressible
SKE. Hence, the Incompressible PKE game in G2 cannot be won with a non-negligble
advantage as then a reduction can win the security game for KDM Incompressible
SKE.

The above sequence of hybrids show that the above scheme is KDM Incompressible PKE
secure.

© 2024, Indian Institute of Technology Delhi

2.2 Incompressible KDM CCA 8

2.2 Incompressible KDM CCA

We construct an Incompressible KDM secure CCA encryption scheme via a Non-Interactive
Zero Knowledge proving scheme, a one-time Incompressible projective-KDM SKE, an in-
compressible CCA secure PKE, an incompressible CPA secure PKE and a Garbling scheme.
Firstly, we look at each of these primitives:
NIZKs for NP-languages can be obtained through various assumptions such as trapdoor
permutations[Gro10] and d-LIN assumptions[GOS12]. Recent work by Koppula et al[?]
has shown the existence of a projective KDM Incompressible SKE via a modification to
Dziembowski’s scheme[Dzi06] for constructing Incompressible SKEs. Recent works in in-
compressible cryptography give us rate-1 CPA secure Incompressible PKE[JWZ22] and CCA
secure incompressible PKE[BDD22] schemes. We also use Yao’s garbled circuits[JW16]. Our
scheme is a modification of the work on CPA-to-CCA transformation of KDM security[KM19a]

We describe the IncKDMCCA scheme in brief: Assume that IncPKE is an incompressible CPA
secure PKE, PRJ is a projection secure KDM Incompressible SKE, IncCCA is an incompress-
ible CCA2 PKE, NIZK is a non-interactive zero knowledge protocol for NP language
L =

{
(pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}|∀i ∈ [ls] : ∃(labi, ri,0, ri,1) :

cti,0 = IncPKE.Enc(pki,0, labi; ri,0), cti,1 = IncPKE.Enc(pki,1, labi; ri,1)
}

and (Garble,Eval, Sim) be a secure garbling scheme KeyGen(.) : we sample 2 ∗ ls pairs of keys
as (pki,γ, ski,γ) ← IncPKE.KeyGen(.), we sample (pkCCA, skCCA) ← IncCCA.KeyGen(.), crs ←
NIZK.K(.), s← PRJ.KeyGen(.), ctsk ← PRJ.Enc(s, (skCCA, (ski,si)i∈[ls])). Finally IncKDMCCA.sk :=

s and IncKDMCCA.pk := (ctsk, (pki,γ, pkCCA)) Enc(pk,m):

• sample (C̃m, (labi)i∈[ls])← Sim(1λ, |Cm|,m)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Let w = (labi, ri,0, ri,1)i∈[ls]

• Π← NIZK.P(crs, x, w)

• Finally return

ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃m),Π)

)
Dec(sk, ctCCA):

•
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

•
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃m),Π

)
= IncCCA.Dec(pkCCA, skCCA, ctCCA)

• Let x = (pki,γ, cti,γ). If NIZK.V(crs, x,Π) ̸= 1 : return ⊥

© 2024, Indian Institute of Technology Delhi

2.3 LR-KDM 9

• ∀i ∈ [ls] :
labi = IncPKE.Dec(pki,si , ski,si , cti,si)

• Return Eval(C̃m, (labi)i∈[ls])

Correctness is easy to verify. For proof of security, see the hybrid transitions below:

• G1 : switch to the hybrid which simulates the proof and key generation for NIZK.
This step removes the dependence of w on Π. In fact w is not needed anymore. This
transition is valid because of zero-knowledge property of NIZK.

• G2 : switch to Garble instead of circuit and labels generated by Sim. Transition is
valid due to security of (Garble,Eval, Sim).

• G3 : for cti,1⊕si which were earlier encryptions of labi,si , now switch to encryption of
labi,1⊕si . This step is valid by the Incompressible PKE security of IncPKE. Also, this
step removes the dependence of encryption queries and cti,γ on s.

• G4 : In decryption switch from labi = IncPKE.Dec(pki,si , ski,si , cti,si) to
labi = IncPKE.Dec(pki,0, ski,0, cti,0). This transition will work due to the soundness
property of NIZK. For a valid proof Π which is accepted, IncPKE.Dec(pki,0, ski,0, cti,0) =
IncPKE.Dec(pki,1, ski,1, cti,1) must hold ∀i if the elements are in language L. This step
removes the dependence of decryption queries on s.

• G5 : We move from ctsk ← PRJ.Enc(s, (skCCA, (ski,si)i∈[ls])) to ctsk ← PRJ.Enc(s, 0).
This is valid because of Incompressible Projection KDM SKE security of PRJ. This
step removes the dependence of s in KeyGen.

• G6 : For CCA encryption, we switch to an encryption of 0. This is now feasible as the
dependence of the CCA step on s is not there at all. This transition is valid because
of Incompressible CCA security of KDM.

• G7 : Finally we revert to honest proofs for NIZK instead of simulated proofs. The
transition holds valid due to zero-knowledgeness, We also move to this hybrid to show
IncPKE.Dec(pki,si , ski,si , cti,si) to labi = IncPKE.Dec(pki,0, ski,0, cti,0) using soundness
of NIZK. Note that, since in G7 the challenge bit is information-theoretically hidden
from the adversary’s view, an adversary cannot win in G7 with any advantage.

From the above claims, we can see that IncKDMCCA is an Incompressible KDM CCA secure
encryption scheme

2.3 LR-KDM

In this section, we provide a brief overview for LR-smooth homomorphic hash proof systems
and LR-KDM secure PKE schemes:

© 2024, Indian Institute of Technology Delhi

2.3 LR-KDM 10

2.3.1 Leakage-Resilient Hash Proof System

A hash proof system HPS = (Setup,Encaps,Decaps) associated with the language L consists
of the following algorithms.

• Setup(1λ) : The setup algorithm takes as input the security parameter and outputs a
pair of public and secret key (pk, sk).

• Encaps(pk, (x,w)) : The encoding algorithm takes as input a public key pk and a pair
of string and witness (x,w) from the language L and outputs a string k ∈ L′

• Decaps(sk, x) : The decoding algorithm takes as input the secret key sk, an input string
x ∈ L ∪ L and string and outputs a string k ∈ L′.

A leakage-resilient (homomorphic) hash proof system must satisfy the following properties:

Correctness For all λ, (pk, sk)← Setup(1λ) and (x,w)← L,

Pr[Encaps(pk, (x,w)) = Decaps(sk, x)] ≥ 1− negl(λ)

Homomorphism For all λ : ∀(pk, sk)← Setup(1λ) and ∀x, y in the domain of Decaps(sk, .),

Decaps(sk, x⊙ y) = Decaps(sk, x)⊙ Decaps(sk, y)

Leakage-Resilient Smoothness A hash proof system is ℓ(λ)-smooth if for large enough
λ, any (leakage) function f such that the size of the output of f is ℓ(λ)

(pk, f(sk), x,Decaps(sk, x)) ≈s (pk, f(sk), x, t)

where the distribution is over (pk, sk)← Setup(1λ), x← L and t← L′.

We define LR-KDM PKE schemes according to the notion given below

2.3.2 Leakage-Resilient Key-Dependent Message PKE Security.

Consider the following experiment with an adversary A where Fλ,S is a class of functions
f : SKλ,S →Mλ,S and Hλ,S is a class of functions h : SKλ,S → LS, and LS is the class of
Leakage strings of length at most S.

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

© 2024, Indian Institute of Technology Delhi

2.3 LR-KDM 11

• Query Phase: A chooses message query m0,m1 ∈ Fλ,S. The challenger randomly
chooses d ∈ {0, 1} and computes a ciphertext ct∗ = Enc(pk,mb) and sends ct∗ to the
adversary A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

We also require that the language L is subgroup indisinguishable

Subgroup Indistinguishability We say that L is subgroup indistinguishable if the distri-
butions D1 = {x : x← L} and D2 = {x : x← L∪L} are computationally indistinguishable.

We can construct LR-smooth homomorphic Hash Proof Systems from DDH. We refer
the reader to section 6.2. Using the construction in section 6.2, we can construct LR-KDM
PKE schemes (refer to section 6.3) over the class of affine functions.

© 2024, Indian Institute of Technology Delhi

Chapter 3

Preliminaries

3.1 Preliminaries and Notations

Throughout this paper, we will use λ to denote the security parameter and negl(·) to denote a
negligible function in the input. We will use the short-hand notation PPT for “probabilistic
polynomial time”. For any finite set X, x← X denotes the process of picking an element x
from X uniformly at random. Similarly, for any distribution D, x← D denotes an element
x drawn from the distribution D. For any natural number n ∈ N, [n] denotes the set
{1, 2, . . . , n}. For any two binary string x and y, x||y denotes the concatenation of x and y.
For ℓ-length binary string x, xi denotes the ith bit of x.

3.1.1 Function Classes

In our thesis, we deal with the following functions. These are listed below:
Projection functions: A function f : {0, 1}m → {0, 1}n is said to be a projection function
if each of its output bits depends on at most a single bit of its input, i.e., for all j ∈ [n],
f(x)j ∈ {0, 1, xi, 1⊕ xi} for some i ∈ [m].

Affine linear functions: We define the following class

Faff =
{
fa,b : {0, 1}m → {0, 1}|∀s ∈ {0, 1}m ∃ ϕ : fa,b(s) = ϕ(a⊤s+ b)

}
.

Constant functions: Although trivial, we mention the class of constant functions as well.
f is a constant function if ∀x1, x2 in the domain of f , f(x1) = f(x2)

3.1.2 Average Min-Entropy

For a random variable X, the average min-entropy is defined as

H∞(X) = − logmax
x

Pr[X = x]

3.1 Preliminaries and Notations 13

. For two jointly distributed random variables (X, Y), the average min-entropy, the average
min-entropy of X conditioned on Y is defined as

H∞(X|Y) = − logEy←Y

[
max

x
Pr[X = x|Y = y]

]
Claim 1 ([DRS04]). For any random variable X, Y where Y is supported over a set of size
T , H∞(X|Y) ≥ H∞(X, Y)− log(T) ≥ H∞(X)− log(T).

3.1.3 Strong Average Min-Entropy Extractor

A (k, ϵ)-strong average min-entropy extractor is an efficient function Ext : {0, 1}d×{0, 1}n →
{0, 1}m such that for all jointly distributed random variable X, Y where X takes values
{0, 1}d and H∞(X|Y) ≥ k, we have (Ud,Ext(X,Ud), Y) ≈ϵ (Ud, Um, Y) where Ud, Um are
uniformly random strings of length d,m respectively. [Nis90]

3.1.4 Leftover Hash Lemma

Universal Hashing: A family H of deterministic functions H : X → Y is a universal hash
family if ∀x1, x2 ∈ X : x1 ̸= x2, we have Prh←H[h(x1) = h(x2)] =

1
|Y|

Leftover Hash Lemma: "IfH is a universal hash family withH = {H : X → {0, 1}m} and
|H| = 2d and if H∞(X|Y) ≥ k and m = k−2 log(1

ϵ
), then (H(X), H, Y) ≈ ϵ

2
(Um, Ud, Y)"[SGV11].

Hence, the universal hash family H gives a (k, ϵ
2
) extractor

3.1.5 Non-Interactive Zero Knowledge proof systems (NIZK)

A non-interactive zero knowledge proof system(NIZK) for an NP language L is defined by
the following 5 algorithms:

• K(1λ): Outputs a common reference string (crs)

• S1(1
λ): Outputs a simulated pair common reference string and trapdoor (crs, τ)

• P (crs, x, w): Given the common reference string crs, a string x with a witness w for
language L, P returns a proof π

• S2(crs, τ): Outputs a simulated proof π

• V (crs, x, π): Outputs 1 if the proof is accepted, else outputs 0

Correctness: ∀x ∈ L with witness w:

Pr[V (crs, x, π) = 1|π − P (crs, x, w)] ≥ 1− negl(λ)

© 2024, Indian Institute of Technology Delhi

3.1 Preliminaries and Notations 14

Soundness:
Pr[∃π : V (crs, x, π) = 1 ∧ x /∈ L] ≤ negl(λ)

Zero Knowledgeness: A NIZK for language L is zero-knowledge if ∃ a ppt simulator
S = (S1, S2) such that for all x ∈ L with a witness w:

{(crs, π) : crs← K(1λ), π ← P (σ, x, w)} ≈

{(crs, π) : (crs, τ)← S1(1
λ), π ← S2(crs, τ)}

3.1.6 Garbling schemes

Let Cn be some class of circuits where the input length of each circuit is n. A garbling
scheme (Garble,Eval, Sim) has the following algorithms[Yao86, KM19b]:

• Garble(1λ, C ∈ Cn): Outputs the garbled circuit C̃ and (labi,γ)i∈[n],γ∈{0,1}

• Eval(C̃, ((lab)i)i∈[n]): Outputs a result string y

• Sim(1λ, |C|, C(x)): Outputs the garbled circuit C̃ and (labi)i∈[n]

Correctness: For correctness, we require both of the following to be true:

1. Eval(C̃, (labi,xi
)i∈[n]) = x where (C̃, (labi,γ)i∈[n],γ∈{0,1})← Garble(1λ, C)

2. Eval(C̃, (labi)i∈[n]) = x where (C̃, (labi)i∈[n])← Sim(1λ, |C|, C(x))

Security: For security, the following distributions must be indistinguishable:

• D1 = {C̃, (labi,xi
)i∈[n]|(C̃, (labi,γ)i∈[n],γ∈{0,1})← Garble(1λ, C)}

• D2 = {C̃, (labi)i∈[n]|(C̃, (labi)i∈[n])← Sim(1λ, |C|, C(x))}

3.1.7 Symmetric and Public Key Encryption

A symmetric key encryption scheme SKE = (Setup,Enc,Dec) with message space {Mλ,S}λ,S,
key space {Kλ,S}λ,S and ciphertext space {Cλ,S}λ,S consists of the following PPT algorithms.

• Setup(1λ, 1S) : The setup algorithm is a randomized algorithm that takes as input the
security parameter λ and a parameter 1S and outputs a secret key sk.

• Enc(sk,m) : The encryption algorithm is a randomized algorithm takes as input a
secret key sk and a message m ∈Mλ,S and outputs a ciphertext ct.

© 2024, Indian Institute of Technology Delhi

3.1 Preliminaries and Notations 15

• Dec(sk, ct) : The decryption algorithm takes as input a secret key sk and a ciphertext
ct and outputs either a message m ∈Mλ,S or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, S ∈ N,m ∈ Mλ,S and
sk← Setup(1λ, 1S),

Pr
r
[Dec(sk, ct) = m | ct← Enc(sk,m; r)] = 1

where the probability is over the random bits used in the encryption algorithm.

CPA-SKE Security. Consider the following experiment with an adversaryA where Setup
algorithm takes only 1λ as input.

• Initialization Phase: The challenger runs sk← Setup(1λ).

• Pre-Challenge Query Phase: A is allowed to make polynomially many queries.
For each query m, the challenger computes ct ← SKE.Enc(sk,m) and returns ct to
Adv.

• Challenge Phase: A outputs two message m0,m1. The challenger randomly chooses
b ∈ {0, 1} and computes a ciphertext ct∗ ← Enc(sk,mb) and sends it to A.

• Post-Challenge Query Phase: A is allowed to make polynomially many queries.
For each query m, the challenger computes ct ← SKE.Enc(sk,m) and returns ct to
Adv.

• Response Phase: A outputs b′ ∈ {0, 1} and wins the experiment if b = b′.

An SKE scheme is said to be secure if for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

Similarly, a public key encryption scheme PKE = (Setup,Enc,Dec) with message space
{Mλ,S}λ,S, key space {Kλ,S}λ,S and ciphertext space {Cλ,S}λ,S consists of the following PPT
algorithms.

• Setup(1λ, 1S) : The setup algorithm is a randomized algorithm that takes as input the
security parameter λ and a parameter 1S and outputs the public key, secret key pair
(pk, sk).

• Enc(pk,m) : The encryption algorithm is a randomized algorithm takes as input the
public key pk and a message m ∈Mλ,S and outputs a ciphertext ct.

• Dec(sk, ct) : The decryption algorithm takes as input a secret key sk and a ciphertext
ct and outputs either a message m ∈Mλ,S or ⊥.

© 2024, Indian Institute of Technology Delhi

3.2 Variants of Key-Dependent Message (KDM) Security 16

Correctness. For correctness, we require that for all λ ∈ N, S ∈ N,m ∈ Mλ,S and
sk← Setup(1λ, 1S),

Pr
r
[Dec(sk, ct) = m | ct← Enc(pk,m; r)] = 1

where the probability is over the random bits used in the encryption algorithm.

CPA-PKE Security. Consider the following experiment with an adversaryA where Setup
algorithm takes only 1λ as input.

• Initialization Phase: The challenger runs sk← Setup(1λ).

• Pre-Challenge Query Phase: A is allowed to make polynomially many queries.
For each query m, the challenger computes ct ← SKE.Enc(sk,m) and returns ct to
Adv.

• Challenge Phase: A outputs two message m0,m1. The challenger randomly chooses
b ∈ {0, 1} and computes a ciphertext ct∗ ← Enc(pk,mb) and sends it to A.

• Post-Challenge Query Phase: A is allowed to make polynomially many queries.
For each query m, the challenger computes ct ← SKE.Enc(sk,m) and returns ct to
Adv.

• Response Phase: A outputs b′ ∈ {0, 1} and wins the experiment if b = b′.

A PKE scheme is said to be CPA secure if for all PPT adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

3.2 Variants of Key-Dependent Message (KDM) Secu-
rity

First we introduce the notion of Key-Dependent Message SKE and PKE secure schemes,
after which we add the notion of incompressible encryption to KDM schemes. We also
mention a notion of KDM secure encryption in the presence of adversarial leakage of the
key’s bits and the notion of leakage resilience in the KDM PKE setting.

3.2.1 KDM SKE encryption

Consider the following experiment with an adversary A = (A) where Fλ,S is a class of
functions f : Kλ,S →Mλ,S.

• Initialization Phase: The challenger runs sk← Setup(1λ, 1S).

© 2024, Indian Institute of Technology Delhi

3.2 Variants of Key-Dependent Message (KDM) Security 17

• Challenge Phase: A outputs two functions f0, f1 ∈ Fλ,S. The challenger randomly
chooses d ∈ {0, 1} and computes a ciphertext ct∗ ← Enc(sk, fb(sk)) and sends ct∗ to
A.

• Response Phase: A outputs its guess d′ and wins the experiment iff d = d′

An SKE scheme is said to be key-dependent message secure if for all PPT adversaries
A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

3.2.2 KDM PKE encryption

Consider the following experiment with an adversary A = (A) where Fλ,S is a class of
functions f : Kλ,S →Mλ,S.

• Initialization Phase: The challenger runs (pk, sk)← Setup(1λ, 1S).

• Challenge Phase: A outputs two functions f0, f1 ∈ Fλ,S. The challenger randomly
chooses d ∈ {0, 1} and computes a ciphertext ct∗ ← Enc(pk, fb(sk)) and sends ct∗ to
A.

• Response Phase: A outputs its guess d′ and wins the experiment iff d = d′

A PKE scheme is said to be key-dependent message secure if for all PPT adversaries A,
there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

3.2.3 KDM Incompressible SKE encryption.

Consider the following experiment with an adversary A = (A1,A2) where Fλ,S is a class of
functions f : Kλ,S →Mλ,S.

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs sk← Setup(1λ, 1S).

• Challenge Phase: A1 outputs a function f ∈ Fλ,S, along with an auxiliary infor-
mation aux. The challenger randomly chooses d ∈ {0, 1} and computes a ciphertext
ct∗ = Enc(sk,0) if d = 0, else it computes ct∗ = Enc(sk, f(sk)). It sends ct∗ to A1.

• First Response Phase: A1 computes a state st such that |st| ≤ S.

• Second Response Phase: A2 receives (sk, aux, st) and outputs d′. A wins the
experiment if d = d′.

© 2024, Indian Institute of Technology Delhi

3.2 Variants of Key-Dependent Message (KDM) Security 18

An SKE scheme is said to be key-dependent message incompressible secure if for all PPT
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

3.2.4 KDM Incompressible PKE Security.

Consider the following experiment with an adversary A = (A1,A2) where Fλ,S is a class of
functions f : SKλ,S →Mλ,S.

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1

• Challenge Phase: A1 outputs a function f ∈ Fλ,S, along with an auxiliary infor-
mation aux. The challenger randomly chooses d ∈ {0, 1} and computes a ciphertext
ct∗ = Enc(pk,0) if d = 0, else it computes ct∗ = Enc(pk, f(sk)). It sends ct∗ to A1.

• First Response Phase: A1 computes a state st such that |st| ≤ S.

• Second Response Phase: A2 receives (pk, sk, aux, st) and outputs d′. A wins the
experiment if d = d′.

A PKE scheme is said to be key-dependent message incompressible secure if for all PPT
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

3.2.5 Leakage-Resilient Key-Dependent Message PKE Security.

Consider the following experiment with an adversary A where Fλ,S is a class of functions
f : SKλ,S →Mλ,S and Hλ,S is a class of functions h : SKλ,S → LS, and LS is the class of
Leakage strings of length at most S.

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase: A chooses message query m0,m1 ∈ Fλ,S. The challenger randomly
chooses d ∈ {0, 1} and computes a ciphertext ct∗ = Enc(pk,mb) and sends ct∗ to the
adversary A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

© 2024, Indian Institute of Technology Delhi

3.2 Variants of Key-Dependent Message (KDM) Security 19

A PKE scheme is said to be leakage-resilient key-dependent message secure if for all
PPT adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

© 2024, Indian Institute of Technology Delhi

Chapter 4

KDM Incompressible encryption in the random oracle
model

KDM Incompressible SKE from RO: Let λ, S be security parameters, with lk being
polynomial in λ. Given the functions G : {0, 1}lk × {0, 1}poly(λ) −→ {0, 1}n, H : {0, 1}lk ×
{0, 1}n −→ {0, 1}poly(λ) modelled as random oracles with the adversary having access to
both oracles, We can construct a KDM Incompressible SKE scheme for all class of functions
f0, f1 of unbounded size in the random oracle model KdmIncSKE = (KeyGen,Enc,Dec) for
the message space {0, 1}n with ciphertext size poly(λ) and state size n = |S| + poly(λ) as
given below:

• KeyGen(1λ, 1S) : Sample a uniform key k ∈ {0, 1}poly(λ). Return k.

• Enc(k,m) : Choose a random r ∈ {0, 1}poly(λ). Let d = G(k, r) ⊕ (m). Let c =
H(k, d)⊕ r. Return ct = (c, d)

• Dec(k, ct = (c, d)) : Compute r = H(k, d)⊕ c. Compute m = G(k, r)⊕ d. Return m.

Theorem 4.0.1. The above SKE scheme is Incompressible KDM secure in the Random
Oracle Model

Proof. We prove security using a sequence of hybrids.

G0: This is the incompressible KDM SKE game

• Sample a uniformly random k ← {0, 1}poly(λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Sample a uniformly random r ← {0, 1}poly(λ)

• Compute d = G(k, r)⊕ fb(k)

• Compute c = H(k, d)⊕ r

• Compute ct = (c, d)

• Send ct to A1 and receive state st of size at most S

21

• Send st, f0, f1, k, aux to A2, which outputs bit b′

G1:

• Sample a uniformly random k ← {0, 1}poly(λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Sample a uniformly random r ← {0, 1}poly(λ)

• Compute d = G(k, r)⊕ fb(k)

• Compute c = H(k, d)⊕ r

• Compute ct = (c, d)

• Send ct to A1 and receive state st of size at most S

• If A1 queries G or H on (k, x) for some x, abort

• Send st, f0, f1, k, aux to A2, which outputs bit b′

G2: Maintain a table simulating the random oracle. For a new query, sample a random
response add it to the table, else return the existing entry in the table.

• Sample a uniformly random k ← {0, 1}poly(λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Maintain a table for random oracle queries for G and H.

• Compute d← {0, 1}n

• Compute c← {0, 1}poly(λ)

• Sample a uniformly random r ← {0, 1}poly(λ)

• In the table, set G(k, r) as d⊕ fb(k)

• In the table, set H(k, d) as c⊕ r

• Compute ct = (c, d)

• Send ct to A1 and receive state st of size at most S

• If A1 queries G or H on (k, x) for some x, abort

© 2024, Indian Institute of Technology Delhi

22

• Send st, f0, f1, k, aux to A2, which outputs bit b′

G3:

• Sample a uniformly random k ← {0, 1}poly(λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Maintain a table for random oracle queries for G and H.

• Compute d← {0, 1}n

• Compute c← {0, 1}poly(λ)

• Sample a uniformly random r ← {0, 1}poly(λ)

• In the table, set G(k, r) as d⊕ fb(k)

• In the table, set H(k, d) as c⊕ r

• Compute ct = (c, d)

• Send ct to A1 and receive state st of size at most S

• If A1 queries G or H on (k, x) for some x, abort

• Send st, f0, f1, k, aux to A2, which outputs bit b′

• If A2 queries G(k, r) before querying H(k, d), abort

G4:

• Sample a uniformly random k ← {0, 1}poly(λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Maintain a table for random oracle queries for G and H.

• Compute d← {0, 1}n

• Compute c← {0, 1}poly(λ)

• Sample a uniformly random r ← {0, 1}poly(λ)

• In the table, set G(k, r) as d⊕ fb(k)

• In the table, set H(k, d) as c⊕ r

© 2024, Indian Institute of Technology Delhi

23

• Compute ct = (c, d)

• Send ct to A1 and receive state st of size at most S

• If A1 queries G or H on (k, x) for some x, abort

• Send st, f0, f1, k, aux to A2, which outputs bit b′

• If A2 queries G(k, r) before querying H(k, d), abort

• If A2 queries H(k, d), abort

Claim 2. G0 and G1 are indistinguishable

Proof. If an adversary can distinguish between G0, G1 the adversary must with non-negligible
probability query G or H on (k, x) for some k. However, this is impossible as for any k,
G(k, r) and H(k, d) are randomly sampled, hence the distribution (c, d) is identical to a
random distribution

Claim 3. G1 and G2 are indistinguishable

Proof. Note that since A1 has not queried (k, x) for any x on F,G oracles, all values of
H(k, x) and G(k, x) are uniformly randomly chosen whenever queried except for G(k, r)

and H(k, d) in G1. Now since at the time of initial sampling G(k, r) is also random, we
can switch to the following game: compute d randomly and c randomly as well. Compute
r randomly and in our table, set G(k, r) as f(k) ⊕ d and set H(k, d) as c ⊕ r. This new
game is logically equivalent to G2. Now, it is impossible that an adversary can query G(k, r)

before H(k, d) with non-negligible probability, as c and d have no information about r and
r is uniformly random given all other information except H(k, d). Hence, G1 and G2 are
indistinguishable

Claim 4. G2 and G3 are indistinguishable

Proof. Since in G2, (c, d) are now randomly sampled independent of r, and the only infor-
mation that the adversary can get about r is through a random oracle query to H(k, d), it is
impossible for an adversary to query G(k, r) before H(k, d) with non-negligible probability.
Hence, G2 and G3 are indistinguishable.

Claim 5. G3 and G4 are indistinguishable

Proof. Since the adversary does not query G(k, r) before H(k, d), and d is uniformly ran-
domly sampled, and the adversary’s view has only st which is poly(λ) bits smaller than n,
the probability of querying H(k, d) is negligible in λ. Hence, G3 and G4 are indistinguish-
able.

Claim 6. The adversary can win in G4 with at most 1
2

probability

© 2024, Indian Institute of Technology Delhi

24

Proof. Since no queries to G(k, r) and H(k, d) are made by both adversaries, and c and d

are randomly sampled, there is no information about fb(k) in the adversary’s view. Hence,
the adversary can win with at most 1

2
probability

From the above claims, it is easy to show that for any adversary, KdmIncSKE is a KDM
Incompressible SKE secure scheme, as for all adversaries, the probability of winning in the
security game of KdmIncSKE ≤ 1

2
+ negl(λ)

KDM Incompressible PKE from RO: Using the above construction along with a CPA
secure PKE scheme PKE′ = (KeyGen,Enc,Dec), and assuming a random hash function
H ′ : {0, 1}poly(λ) −→ {0, 1}lk modelled as a random oracle, we construct the incompressible
KDM PKE scheme IncKDMPKE = (KeyGen,Enc,Dec) over message space {0, 1}n and any
class of functions F for the KDM query as given below:

• KeyGen(1λ, 1S) : Sample (pk, sk)← PKE′.KeyGen′(1λ). Return (pk, sk)

• Enc(pk,m) : Sample uniformly random r ← {0, 1}poly(λ). Compute c← PKE′.Enc(pk, r)
and d← KdmIncSKE.Enc(H ′(r),m). Return ct = (c, d)

• Dec(sk, ct = (c, d)) : Compute r = PKE′.Dec′(sk, c). Return m = KdmIncSKE.Dec(H ′(r), d)

Theorem 4.0.2. The above PKE scheme is Incompressible KDM secure in the Random
Oracle Model

Proof. Correctness holds trivially. For proving security, we use a sequence of hybrids. G0:

This is the incompressible KDM PKE game

• Challenger samples (pk, sk)← PKE′.KeyGen(1λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Sample a uniformly random r ← {0, 1}poly(λ)

• Compute c← PKE′.Enc(pk, r)

• Compute d← KdmIncSKE.Enc(H ′(r), fb(sk))

• Compute ct = (c, d). Send ct to A1 and receive state st of size at most S

• Send st, f0, f1, k, aux to A2, which outputs bit b′

G1:

© 2024, Indian Institute of Technology Delhi

25

• Challenger samples (pk, sk)← PKE′.KeyGen(1λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Sample a uniformly random r ← {0, 1}poly(λ)

• Compute c← PKE′.Enc(pk, r)

• Compute d← KdmIncSKE.Enc(H ′(r), fb(sk))

• Compute ct = (c, d). Send ct to A1 and receive state st of size at most S

• If A1 queries H ′(r) abort

• Send st, f0, f1, k, aux to A2, which outputs bit b′

G2: Maintain a table simulating the random oracle. For a new query, sample a random
response add it to the table, else return the existing entry in the table.

• Challenger samples (pk, sk)← PKE′.KeyGen(1λ)

• Receive function queries f0, f1 from A1 and auxiliary information aux

• Sample a bit b← {0, 1}

• Sample a uniformly random r ← {0, 1}poly(λ)

• Compute c← PKE′.Enc(pk, r)

• Sample k uniformly randomly, and in the simulation table set H ′(r) as k

• Compute d← KdmIncSKE.Enc(k, fb(sk))

• Compute ct = (c, d). Send ct to A1 and receive state st of size at most S

• If A1 queries H ′(r) abort

• Send st, f0, f1, k, aux to A2, which outputs bit b′

Claim 7. G0 and G1 are indistinguishable

Proof. If there exists an adversary A1 that queries H ′(r) with non-negligible probability, we
can construct a reduction that can break the CPA security of Pke′. Note that since H ′ is a
random oracle, d is independent of r and has no information that affects the distribution of
r in the adversary’s view.

Claim 8. G1 and G2 are indistinguishable

© 2024, Indian Institute of Technology Delhi

26

Proof. The games are equivalent as the behaviour of the random oracle is equivalent to
simulating a randomized table.

Claim 9. The adversary can win in G2 with at most 1
2
+ negl(λ) probability

Proof. This holds as k is independent of r and hence, c does not have any information
about bit b. If an adversary can win G2 with non-negligible advantage, we can construct a
reduction that can also win the KDM Incompressible security game for KdmIncSKE.

From the above claims, it is easy to show that for any adversary, IncKDMPKE is a KDM
Incompressible PKE secure scheme, as for all adversaries, the probability of winning in the
security game of IncKDMPKE ≤ 1

2
+ negl(λ)

© 2024, Indian Institute of Technology Delhi

Chapter 5

Incompressible KDM CCA

• Let IncPKE be an incompressible CPA secure PKE with randomness space R

• Let PRJ be a one-time secure projection KDM incompressible SKE with key space
K = {0, 1}ls

• Let IncCCA be an incompressible CCA2 secure PKE.

• Let NIZK be a Non-Interactive Zero Knowledge proving scheme with adaptive sound-
ness for the following NP language L:

– L =
{
(pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}|∀i ∈ [ls] : ∃(labi, ri,0, ri,1) :

cti,0 = IncPKE.Enc(pki,0, labi; ri,0), cti,1 = IncPKE.Enc(pki,1, labi; ri,1)
}

• Let (Garble,Eval, Sim) be a secure circuit garbling scheme.

Consider the scheme IncKDMCCA = (IncKDMCCA.KeyGen, IncKDMCCA.Enc, IncKDMCCA.Dec)

with message spaceMλ,S, ciphertext space Cλ,S:

• IncKDMCCA.KeyGen(1λ, 1S): Let ls be the key length for PRJ

– ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

– (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

– (crs)← NIZK.K(1λ)

– s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls

– ctsk ← PRJ.Enc
(
s, (skCCA, (ski,si)i∈[ls])

)
– IncKDMCCA.sk := s

– IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
– Return (IncKDMCCA.pk, IncKDMCCA.sk)

• IncKDMCCA.Enc(IncKDMCCA.pk,m) : Here Cm denotes a circuit hardwired to output
the constant m for all input configurations

–
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk

– (C̃m, (labi)i∈[ls])← Sim(1λ, |Cm|,m)

– ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi; ri,γ)

– Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

– Let w = (labi, ri,0, ri,1)i∈[ls]

– Π← NIZK.P(crs, x, w)

– Finally return

ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃m),Π)

)

28

• IncKDMCCA.Dec(IncKDMCCA.pk, IncKDMCCA.sk, ctCCA)

–
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

–
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

–
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃m),Π

)
= IncCCA.Dec(pkCCA, skCCA, ctCCA)

– Let x = (pki,γ, cti,γ). If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
– ∀i ∈ [ls] :

labi = IncPKE.Dec(pki,si , ski,si , cti,si)

– Return Eval(C̃m, (labi)i∈[ls])

Theorem 5.0.1. For the above scheme IncKDMCCA, correctness must hold valid

∀m ∈Mλ,S : Pr[IncKDMCCA.Dec(IncKDMCCA.pk, IncKDMCCA.sk, x) = m : x←
IncKDMCCA.Enc(IncKDMCCA.pk,m)] ≥ 1− negl(λ)

Proof. Let m ∈ Mλ,S. Let
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk and s =

IncKDMCCA.sk. Let ctCCA ← IncKDMCCA.Enc(IncKDMCCA.pk,m). Then IncKDMCCA.Dec(IncKDMCCA.pk, IncKDMCCA.sk, ctCCA)

is as follows:

1.
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk) (. . . correctness of PRJ)

2.
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃m),Π

)
= IncCCA.Dec(skCCA, ctCCA) (. . . correctness of IncCCA)

3. check for NIZK.V(crs, x,Π) must output 1 for m ∈Mλ,S (. . . correctness of NIZK)

4. ∀i ∈ [ls] :
labi = IncPKE.Dec(pki,si , ski,si , cti,si) (. . . correctness of IncPKE)

5. m = Eval(C̃m, (labi)i∈[ls]) (. . . correctness of (Garble,Eval, Sim))

Hence, correctness for IncKDMCCA must hold valid

Theorem 5.0.2. IncKDMCCA is a CCA2 KDM Incompressible secure PKE

Proof. We prove the CCA2 KDM Incompressible security through a sequence of hybrids.

© 2024, Indian Institute of Technology Delhi

29

G0: This is the hybrid for the original incompressible KDM CCA2 game

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs)← NIZK.K(1λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s, (skCCA, (ski,si)i∈[ls])

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1) and computes the encryption of fβ(s)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ(s), (labi)i∈[ls])← Sim(1λ, |Cfβ(s)|, fβ(s))
• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Let w = (labi, ri,0, ri,1)i∈[ls]

• Π← NIZK.P(crs, x, w)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ(s)),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,si , ski,si , cti,si)

© 2024, Indian Institute of Technology Delhi

30

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G1 :

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s, (skCCA, (ski,si)i∈[ls])

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ(s), (labi)i∈[ls])← Sim(1λ, |Cfβ(s)|, fβ(s))
• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Let w = (labi, ri,0, ri,1)i∈[ls]

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ(s)),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

© 2024, Indian Institute of Technology Delhi

31

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,si , ski,si , cti,si)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G2:

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s, (skCCA, (ski,si)i∈[ls])

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ , (labi,γ)(i,γ)∈[ls]×{0,1})← Garble(1λ, fβ)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi,si ; ri,γ)

© 2024, Indian Institute of Technology Delhi

32

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,si , ski,si , cti,si)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G3:

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s, (skCCA, (ski,si)i∈[ls])

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

© 2024, Indian Institute of Technology Delhi

33

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ , (labi,γ)(i,γ)∈[ls]×{0,1})← Garble(1λ, fβ)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi,γ; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,si , ski,si , cti,si)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G4:

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls

© 2024, Indian Institute of Technology Delhi

34

• ctsk ← PRJ.Enc
(
s, (skCCA, (ski,si)i∈[ls])

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ , (labi,γ)(i,γ)∈[ls]×{0,1})← Garble(1λ, fβ)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi,γ; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,0, ski,0, cti,0)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G5:

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}

© 2024, Indian Institute of Technology Delhi

35

(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls

• ctsk ← PRJ.Enc
(
s,0

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ , (labi,γ)(i,γ)∈[ls]×{0,1})← Garble(1λ, fβ)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi,γ; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,0, ski,0, cti,0)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

© 2024, Indian Institute of Technology Delhi

36

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G6:

1. Initialization Phase

(a) The adversary chooses a bit β ← {0, 1}
(b) The first adversary A1 sends (λ, S) to the challenger.

(c) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs, td)← NIZK.S1(1
λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s,0

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(d) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(e) A1 sends aux to the challenger

2. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• (C̃fβ , (labi,γ)(i,γ)∈[ls]×{0,1})← Garble(1λ, fβ)

• ∀(i, γ) ∈ [ls]× {0, 1}: sample ri,γ ← R, cti,γ ← IncPKE.Enc(pki,γ, labi,γ; ri,γ)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

• Π← NIZK.S2(td, x)

• ctCCA ← IncCCA.Enc
(
pkCCA,0

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥

© 2024, Indian Institute of Technology Delhi

37

• ∀i ∈ [ls] :
Compute labi = IncPKE.Dec(pki,0, ski,0, cti,0)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

3. First Response Phase A1 sends st to the challenger where |st| < S

4. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

G7 :

1. The adversary chooses a bit β ← {0, 1}

2. Initialization Phase

(a) The first adversary A1 sends (λ, S) to the challenger.

(b) The challenger computes the following:

• ∀(i, γ) ∈ [ls]× {0, 1}: sample (pki,γ, ski,γ)← IncPKE.KeyGen(1λ, 1S)

• (pkCCA, skCCA)← IncCCA.KeyGen(1λ, 1S)

• (crs)← NIZK.K(1λ)

• s← PRJ.KeyGen(1λ, 1S) where s ∈ {0, 1}ls
• ctsk ← PRJ.Enc

(
s,0

)
• IncKDMCCA.sk := s

• IncKDMCCA.pk :=
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
(c) Challenger maintains a database τ storing ciphertexts returned for encryption

queries. Challenger sends IncKDMCCA.pk to A1

(d) A1 sends aux to the challenger

3. Challenge Phase
Encryption queries:

• Challenger receives the query (f0, f1)

•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• ctCCA ← IncCCA.Enc
(
pkCCA,0

)
• Challenger adds ctCCA to database τ sends ctCCA as response to the query

Decryption queries:

• Challenger receives the query ct. If ct is in database τ , return ⊥
•
(
pkCCA, (pki,γ)(i,γ)∈[ls]×{0,1}, crs, ctsk

)
= IncKDMCCA.pk, s = IncKDMCCA.sk

• Compute
(
skCCA, (ski,si)i∈[ls]

)
= PRJ.Dec(s, ctsk)

© 2024, Indian Institute of Technology Delhi

38

• Compute
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

• Let x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}. If NIZK.V(crs, x,Π) ̸= 1 : return ⊥
• ∀i ∈ [ls] :

Compute labi = IncPKE.Dec(pki,0, ski,0, cti,0)

• Return m = Eval(C̃, (labi)i∈[ls]) as response to decryption query

4. First Response Phase A1 sends st to the challenger where |st| < S

5. Second Response Phase

(a) The challenger sends (aux, sk, st) to the second adversary A2.

(b) A2 outputs β′ ∈ {0, 1}. A = (A1,A2) wins if β′ = β

Below we describe the hybrids in brief and the security proof. For ease of notation let pA,i

denote the probability of A outputting 0 in game Gi:

G0: This is the CCA2 incompressible KDM security game

G1: This is similar to game G0, but we change to the simulated key generation and proof
algorithms for NIZK. Instead of sampling (crs) ← NIZK.K(1λ) and Π ← NIZK.P(crs, x, w),
we switch to (crs, td) ← NIZK.S1(1

λ) and Π ← NIZK.S2(crs, x, w). Note that this removes
the dependence of the proof generated on labi. When we switch later from labi to labi,si , the
NIZK proof still remains independent of s

Claim 10. For any p.p.t adversary A = (A1,A2) : |pA,0 − pA,1| ≤ negl(λ)

Proof. This follows from the zero knowledgeness of NIZK. If there exists an adversary
A which can distinguish between G0, G1 with non-negligible probability, we can create a
reduction which can win against the zero-knowledge challenger for NIZK. Hence G0 and G1

are computationally indistinguishable

G2: This is similar to game G1, but we change to Garble instead of Sim and replace labi

from Sim with labi,si from Garble. Note that labi,1⊕si is not used anywhere in G2 but will be
used in further games. Here, ∀(i, γ) ∈ [ls]× {0, 1} : cti,γ ← IncPKE.Enc(pki,γ, labi,si ; ri,γ)

Claim 11. For any p.p.t adversary A = (A1,A2) : |pA,1 − pA,2| ≤ negl(λ)

Proof. This follows from the security of (Garble,Eval, Sim). An adversary A which can
distinguish between G1, G2 can be used to build a reduction which can win the security
game for (Garble,Eval, Sim)

© 2024, Indian Institute of Technology Delhi

39

G3: This is similar to game G2, but there is a subtlety here. While (ski,si)i∈[ls] is still present
in other parts of the encryption, decryption algorithm, we however are not using (ski,1⊕si)i∈[ls]

elsewhere. Hence, a reduction argument can be made for our transition to cti,1⊕si ←
IncPKE.Enc(pki,1⊕si , labi, 1⊕ si; ri,1⊕si) fromcti,1⊕si ← IncPKE.Enc(pki,1⊕si , labi, si; ri,1⊕si).

Claim 12. For any p.p.t adversary A = (A1,A2) : |pA,2 − pA,3| ≤ negl(λ)

Proof. This follows from the Incompressible CPA PKE security for IncPKE. For each i ∈ [ls],
we can sequentially transition from cti,1⊕si ← IncPKE.Enc(pki,1⊕si , labi,si ; ri,1⊕si) to cti,1⊕si ←
IncPKE.Enc(pki,1⊕si , labi,1⊕si ; ri,1⊕si). If there is any adversary A which can differentiate
between any of these transitions with non-negligble probability, we can create a reduction
for the Incompressible PKE security game and win with a non-negligible advantage

G4: This is similar to game G3, but now we alter the decryption queries such that labi =

IncPKE.Dec(pki,0, ski,0, cti,0) instead of IncPKE.Dec(pki,si , ski,si , cti,si). After this transition,
the decryption queries are also independent of s.

For the sequence of games G3, G4, G5, G6, G7, we also define the following the bad decryption
query events BDQi : i ∈ {4, 5, 6, 7} where BDQi is the following:

In game Gi, A makes a decryption query ct /∈ τ such that:

1.
(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct), x = (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}

and

2. NIZK.V(crs, x,Π) = 1 and

3. ∃i∗ ∈ [ls] such that IncPKE.Dec(pki,0, ski,0, cti,0) = IncPKE.Dec(pki,1, ski,1, cti,1)

Claim 13. For any p.p.t adversary A = (A1,A2) : |pA,3 − pA,4| ≤ Pr[BDQ4]

Proof. The games G3 and G4 are identical if the event BDQ4 does not occur. Hence, the
above inequality must be valid.

G5: At this point, we have completely removed s from the encryption and decryption
queries. Hence, we can alter ctsk using the fact that PRJ.Enc is KDM-incompressible secure.
In G5, we transition from ctsk ← PRJ.Enc(s, (skCCA, (ski,si)i∈[ls])) to ctsk ← PRJ.Enc(s,0). We
notice that ctsk in G4 is an encryption of a projection on s as each of the bits of ski,si depends
on si. Hence, for the reduction to work, we crucially require that PRJ be an Incompressible
KDM secure scheme for the class of projective functions(where each bit of the message is
dependent on at most a single bit of the encryption key s

Claim 14. For any p.p.t adversary A = (A1,A2) : |pA,4 − pA,5| ≤ negl(λ)

© 2024, Indian Institute of Technology Delhi

40

Proof. This holds because of the Incompressible KDM secure property of PRJ. Using an
adversary A which can distinguish between G4, G5, we can emulate a reduction that can
win the Incompressible SKE game for PRJ. Note that this was transition was not possible
in the earlier games due to the presence

Claim 15. For any p.p.t adversary A = (A1,A2) : |Pr[BDQ4]− Pr[BDQ5]| ≤ negl(λ)

Proof. This again holds due to the projective KDM Incompressible SKE security of PRJ. If
there is an adversary that can make Bad Decryption Queries with non-negligible difference
in probabilities for G4, G5, then I can build a reduction against the challenger for projective
KDM Incompressible SKE game of PRJ that simulates the entire encryption/decryption
oracle as all the terms including the keys skCCA and ski,0 are independent of s and if it sees
a bad-decryption query, it guesses bit 0, else it guesses bit 1 and can distinguish between
G4, G5 with non-negligible probability. Hence, the above claim holds by contradiction.

G6 : After G5 we see that skCCA has been eliminated from ctsk. Hence, we can now replace
ctCCA with an encryption of all zeros, and the games G5, G6 would be indistinguishable by
the Incompressible CCA security of IncCCA. The transition from G5 to G6 replaces ctCCA ←
IncCCA.Enc

(
pkCCA, ((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
with ctCCA ← IncCCA.Enc

(
pkCCA,0

)
Claim 16. For any p.p.t adversary A = (A1,A2) : |pA,5 − pA,6| ≤ negl(λ)

Proof. G5 and G6 are indisinguishable due to the Incompressible CCA security of IncCCA.
If there is an adversary A that can distinguish between G5, G6, we construct a reduction
that simulates the KeyGen,Enc,Dec queries and queries the incompressible CCA challenger
with decryption queries as required in the IncKDMCCA.Dec algorithm and for encryption
queries it sends

(
m0,m1

)
=

(
((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)

)
and wins against the challenger

if A guesses correctly for the IncKDMCCA game of G5, G6

Claim 17. For any p.p.t adversary A = (A1,A2) : |Pr[BDQ5]− Pr[BDQ6]| ≤ negl(λ)

Proof. The proof follows again due to the Incompressible CCA security of IncCCA. Let A
be such that |Pr[BDQ5] − Pr[BDQ6]| is non-negligible for A. We can emulate the reduc-
tion adversary B against the Incompressible CCA challenger to which we send

(
m0,m1

)
=(

((cti,γ)(i,γ)∈[ls]×{0,1}, (C̃fβ),Π)
)

whenever encryption queries are made by advA and decryp-
tion queries are made as usual. If A makes a bad-decryption query, we guess bit 0 for
the Incompressible CCA game, else we guess bit 1 and we will win with a probability non-
negligibly differing from 1

2

G7 : We finally revert to the non-simulated proof for NIZK. We crucially need to transition
to this hybrid because we need the soundness property of NIZK to bound the probability
of the bad decryption query (BDQ) event. Soundness for NIZKs holds only when the proof

© 2024, Indian Institute of Technology Delhi

41

is not simulated. We transition back to (crs) ← NIZK.K(1λ) from (crs, td) ← NIZK.S1(1
λ)

in IncKDMCCA.KeyGen and would have transitioned toΠ ← NIZK.P(crs, x, w) from Π ←
NIZK.S2(td, x), but we have already eliminated NIZK.P(crs, x, w) in G6, hence we only see
the change from (crs, td) to (crs) in our game.

Claim 18. For any p.p.t adversary A = (A1,A2) : |pA,6 − pA,7| ≤ negl(λ)

Proof. This trivially follows from the zero-knowledgeness property of NIZK where we re-
place NIZK.S1 with NIZK.K and NIZK.S2 with NIZK.P. However, note that we do not use
NIZK.S2 in encryption queries for G6 and hence, only the change from NIZK.K to NIZK.S2

is mentioned. The reduction is trivial.

Claim 19. For any p.p.t adversary A = (A1,A2) : |Pr[BDQ6]− Pr[BDQ7]| ≤ negl(λ)

Proof. If there is an adversary A such that |Pr[BDQ6] − Pr[BDQ7]| is not negligible, we
can construct a reduction against the zero-knowledge game for NIZK, using the crs given by
the challenger. On returning the bit the adversary A guesses, we win with an advantage
|Pr[BDQ6]−Pr[BDQ7]|

2

Finally, we bound the probabilities pA,7 and Pr[BDQ7]

Claim 20. For any adversary A = (A1,A2) : pA,7 =
1
2

Proof. All the information in the view of adversary A is independent of the bit β chosen by
the challenger in G7. Hence, no adversary can guess the bit β with a probability other than
1
2

Claim 21. For any adversary A = (A1,A2) : Pr[BDQ7] ≤ negl(λ)

Proof. The event BDQ7 is the following:
In the game G7, A makes a decryption query ct /∈ τ such that

NIZK.V(crs, (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1},Π) = 1

and ∃i∗ ∈ [ls] such that IncPKE.Dec(pki,0, ski,0, cti,0) ̸= IncPKE.Dec(pki,1, ski,1, cti,1) where(
(cti,γ)(i,γ)∈[ls]×{0,1}, (C̃),Π

)
= IncCCA.Dec(pkCCA, skCCA, ct)

Now, the condition that ∃i∗ ∈ [ls] : IncPKE.Dec(pki,0, ski,0, cti,0) ̸= IncPKE.Dec(pki,1, ski,1, cti,1)

implies that that (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1} is not in the NP language:

• L =
{
(pki,γ, cti,γ)(i,γ)∈[ls]×{0,1}|∀i ∈ [ls] : ∃(labi, ri,0, ri,1) :

cti,0 = IncPKE.Enc(pki,0, labi; ri,0), cti,1 = IncPKE.Enc(pki,1, labi; ri,1)
}

© 2024, Indian Institute of Technology Delhi

42

which is the language for which NIZK gives proofs. Hence, by the soundness property of
NIZK, Pr[NIZK.V(crs, (pki,γ, cti,γ)(i,γ)∈[ls]×{0,1},Π) = 1] ≤ negl(λ).
Hence, the probability Pr[BDQ7] ≤ negl(λ)

Finally, we compile the above claims to show pA,0 ≤ 1
2
+ negl(λ).

We observe that Pr[BDQ4] ≤ negl(λ) as Pr[BDQ4] − Pr[BDQ5]| ≤ negl(λ), Pr[BDQ5] −
Pr[BDQ6]| ≤ negl(λ), Pr[BDQ6]− Pr[BDQ7]| ≤ negl(λ), Pr[BDQ7] ≤ negl(λ).

Hence, Pr[BDQ4] ≤ negl(λ)

Using the above, we get |pA,3 − pA,4| ≤ Pr[BDQ4] ≤ negl(λ)

Finally, we have pA,7 = 1
2
, |pA,7 − pA,6| ≤ negl(λ), |pA,6 − pA,5| ≤ negl(λ), |pA,5 − pA,4| ≤

negl(λ), |pA,4− pA,3| ≤ negl(λ), |pA,3− pA,2| ≤ negl(λ), |pA,2− pA,1| ≤ negl(λ), |pA,1− pA,0| ≤
negl(λ). Using these, we can show that

|pA,0| ≤
1

2
+ negl(λ)

Hence, IncKDMCCA is Incompressible KDM CCA secure

© 2024, Indian Institute of Technology Delhi

Chapter 6

LR-KDM from Hash Proof Systems

In this chapter, we introduce a construction for Leakage-Resilient Key Dependent Message
secure public key encryption for the class of affine functions from DDH and d-LIN assump-
tions via a cryptographic primitive known as Leakage-Resilient Smooth Hash Proof System.
In the first section, we provide the preliminaries and required definitions for understanding
our construction. In the subsequent section, we provide a construction for leakage-resilient
smooth hash proof systems. Finally, we construct a Leakage-Resilient F -KDM secure public
key encryption scheme from DDH via Leakage-resilient smooth HPS where F refers to the
class of affine functions

6.1 Definitions

Below we present a few preliminary definitions and notions which are pre-requisite to the
construction

6.1.1 Leakage-Resilient Hash Proof System

A hash proof system HPS = (Setup,Encaps,Decaps) associated with the language L consists
of the following algorithms.

• Setup(1λ) : The setup algorithm takes as input the security parameter and outputs a
pair of public and secret key (pk, sk).

• Encaps(pk, (x,w)) : The encoding algorithm takes as input a public key pk and a pair
of string and witness (x,w) from the language L and outputs a string k ∈ L′

• Decaps(sk, x) : The decoding algorithm takes as input the secret key sk, an input string
x ∈ L ∪ L and string and outputs a string k ∈ L′.

A leakage-resilient (homomorphic) hash proof system must satisfy the following properties:

Correctness For all λ, (pk, sk)← Setup(1λ) and (x,w)← L,

Pr[Encaps(pk, (x,w)) = Decaps(sk, x)] ≥ 1− negl(λ)

6.2 Constructing LR-smooth homomorphic HPS from DDH 44

Homomorphism For all λ : ∀(pk, sk)← Setup(1λ) and ∀x, y in the domain of Decaps(sk, .),

Decaps(sk, x⊙ y) = Decaps(sk, x)⊙ Decaps(sk, y)

Leakage-Resilient Smoothness A hash proof system is ℓ(λ)-smooth if for large enough
λ, any (leakage) function f such that the size of the output of f is ℓ(λ)

(pk, f(sk), x,Decaps(sk, x)) ≈s (pk, f(sk), x, t)

where the distribution is over (pk, sk)← Setup(1λ), x← L and t← L′.

We also require that the language L is subgroup indisinguishable

Subgroup Indistinguishability We say that L is subgroup indistinguishable if the distri-
butions D1 = {x : x← L} and D2 = {x : x← L∪L} are computationally indistinguishable

6.1.2 Leakage-Resilient KDM PKE

Here, we briefly describe Leakage-Resilient KDM PKEs along with its formal security game.
Leakage-Resilient KDM PKEs are encryption schemes which are F -KDM secure for some
class of functions F even in the presence of bounded adversarial leakage of the bits of the
secret key. Note that by adversarial leakage, we do not restrict ourselves to the actual
bits present in the secret key. The adversary also has the freedom to compute arbitrary
functions over secret key, the only limitation the adversary should encounter is the bound
on the amount of leakage.

6.2 Constructing LR-smooth homomorphic HPS from DDH

The language L Given a group generator g with group order p, let G be the corresponding
group. Given a matrix A ∈ Zm×n

p , we define the language LA and its complement LA for
our Hash Proof System as

LA =
{
gAx|x ∈ Zn

p

}
LA =

{
gb

⊤|b ∈ Zm
p } \ LA

Now we define the l(λ)-smooth Hash Proof system HPS = (Setup,Encaps,Decaps) below:

• HPS.Setup(1λ, 1l(λ)) :
– Compute n = n(λ), l = l(λ), p = p(λ)m = (n + 2) log(p) + l Sample g ∈ G,A ←

Zm×n
p .

© 2024, Indian Institute of Technology Delhi

6.2 Constructing LR-smooth homomorphic HPS from DDH 45

– Sample s← {0, 1}m. Compute sk = s

– Compute gs
⊤A. Set pk = (g, gA, gs

⊤A)

– Return (pk, sk)

• HPS.Encaps(pk, x = gAx, w = x)

– Compute (g, gA, gs
⊤A) = pk

– Using w = x and gs
⊤A, compute and return gs

⊤Ax

• HPS.Decaps(sk, x = gAx)

– Using s = sk, x = gAx, compute and return gs
⊤Ax

Claim 22. Correctness holds for HPS = (Setup,Encaps,Decaps) as described above

Proof. For any x = gAx, w = x: Encaps(pk, x, w) = gs
⊤Ax. Decaps(sk, x = gAx) = gs

⊤Ax.
Hence, correctness holds.

Claim 23. Homomorphism holds for HPS = (Setup,Encaps,Decaps) as described above

Proof. For any y1 = gAx1 , y2 = gAx2 :

Decaps(sk = s, y1) = gs
⊤Ax1 ,Decaps(sk = s, y2) = gs

⊤Ax2 and
Decaps(sk = s, y1 ⊙ y2) = Decaps(sk = s, gAx1 ⊙ gAx2) = Decaps(sk = s, gA(x1+x2)) =

gs
⊤A(x1+x2) = gs

⊤Ax1 ⊙ gs
⊤Ax2 = Decaps(sk = s, y1)⊙ Decaps(sk = s, y2).

Hence, homomorphism holds true

Claim 24. Leakage-Resilient smoothness holds for HPS = (Setup,Encaps,Decaps)

Proof. For leakage-resilient smoothness, we want the following to hold true:

(pk, f(sk), x,Decaps(sk, x)) ≈ (pk, f(sk), x, t)

where the distribution is over (pk, sk)← Setup(1λ), x ∈ L, t ∈ L′

(pk, f(sk), x,Decaps(sk, x)) = ((g, gA, gs
⊤A), f(s), x, gs

⊤Ax) where x← L∪ L
Now, gs

⊤Ax is a universal hash function with seed x for the input s. We can also see x

separately in our view. Now, in our view:

H∞(s|gs
⊤A, f(s)) ≥ H∞(s|gs

⊤A)− |f(s)|
= H∞(s|gs

⊤A)− l

≥ H∞(s)− |gs
⊤A)| − l

= H∞(s)− n log2(p)− l

= (l + (n+ 2) log2(p))− n log2(p)− l

= 2 log2(p)

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 46

But we know that the final output for the universal hash h(s) = gs
⊤Ax has at-most log2(p)

bits of entropy. Hence, by leftover hash lemma:
(pk, f(sk), x,Decaps(sk, x)) ≈ 1

poly(p(λ))
(pk, f(sk), x,L′) where x← L∪L, (pk, sk)← Setup(1λ).

Note that increasing the dimension m will improve the bounds for smoothness. For p(λ) be-
ing a super-polynomial in λ, the distributions (pk, f(sk), x,Decaps(sk, x)) and (pk, f(sk), x,L′)
are negl(λ) close
Hence, HPS is l(λ) leakage-resilient smooth

We note that L is also subgroup indistinguishable from d-LIN assumptions. Namely, it is
hard to distinguish between the two distributions

{
gAx|x ← Zn

p

}
and

{
gb

⊤|b ∈ Zm
p } for

sufficiently large λ. [Wee15]

6.3 From LR-smooth HPS to LR-KDM

In this section, we discuss how to construct Leakage Resilient KDM secure encryption for
the class of affine functions over the bits of the secret key. Firstly, let us recall the LR-KDM
game:

Consider the following experiment with an adversary A = (A1,A2) where Fλ,S is a class
of functions f : SKλ,S →Mλ,S and Hλ,S is a class of functions h : SKλ,S → LS, and LS is
the class of Leakage strings of length at most S.

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S. A1 on receiving h(sk) outputs st and
sends it to A2

• First Response Phase: A2 receives (pk, st) and chooses function f ∈ Fλ,S, along
with auxiliary information aux. The challenger randomly chooses d ∈ {0, 1} and
computes a ciphertext ct∗ = Enc(pk,0) if d = 0, else it computes ct∗ = Enc(pk, f(sk)).
It sends ct∗ to A3.

• Second Response Phase: A2 receives ct∗ and outputs d′. A wins the experiment if
d = d′.

Correctness: Correctness argument is similar to most other PKE schemes. Specifically,
Pr[Dec(sk, x) = m|x← Enc(pk,m)] ≥ negl(λ)

Security: A PKE scheme is said to be leakage-resilient key-dependent message secure
if for all PPT adversaries A, there exists a negligible function negl(·) such that for all
λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 47

Now, we show how to construct a Leakage Resilient KDM secure scheme from Leakage-
Resilient smooth Hash Proof Systems. Let HPS = (Setup,Encaps,Decaps) be an S(λ)-
leakage resilient smooth HPS for the language L which is subgroup indistinguishable, then
consider the following PKE scheme LRKdm = (KeyGen,Enc,Dec)

• LRKdm.KeyGen(1λ, 1S(λ)) :

– Compute (pk, sk)← HPS.Setup(1λ, 1S(λ))

– Return (pk, sk)

• LRKdm.Enc(pk,m) :

– Sample (x,w)← L
– Calculate and return (x,Encaps(pk, x, w)⊙m)

• LRKdm.Dec(sk, ct) :

– Compute (x, y) = ct

– Compute and return (Decaps(sk, x))−1 ⊙ y

Claim 25. Correctness for PKE encryption holds for LRKdm

Proof. For any m ∈ L′: LRKdm.Dec(sk, (x,Encaps(pk, x, w) ⊙ m)) = (Decaps(sk, x))−1 ⊙
Encaps(pk, x, w)⊙m = m by the correctness of HPS = (Setup,Encaps,Decaps)

Theorem 6.3.1. Given S(λ)-leakage resilient smooth Hash Proof System HPS = (Setup,Encaps,Decaps),
the encryption scheme LRKdm = (KeyGen,Enc,Dec) is S(λ)-leakage resilient smoothF-KDM
PKE secure for the following class of functions :

F = {fx,y : fx,y(sk) = Decaps(sk, x)⊙ y}

Proof. We prove the security through a series of hybrid games:
G0 : This is the original LR-KDM PKE game. Consider an adversary A:

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples (x,w)← L

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 48

– The challenger computes the encryption of fad,bd(sk) as

ct∗ = (x,Encaps(pk, x, w)⊙ fad,bd) = (x,Encaps(pk, x, w)⊙ (Decaps(sk, ad)⊙ bd))

– The challenger returns ct∗ to A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

G1 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples (x,w)← L
– The challenger computes the encryption of fad,bd(sk) as

ct∗ = (x,Decaps(sk, x)⊙ Decaps(sk, ad)⊙ bd)

– The challenger returns ct∗ to A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 26. Hybrids G0, G1 are statistically indistinguishable

Proof. This follows from the correctness of HPS as for (x,w)← L, with 1− negl(λ) proba-
bility, Encaps(pk, x, w) = Decaps(sk, x)

G2 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples x← L∪ L
– The challenger computes the encryption of fad,bd(sk) as

ct∗ = (x,Decaps(sk, x)⊙ Decaps(sk, ad)⊙ bd)

– The challenger returns ct∗ to A

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 49

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 27. Hybrids G1, G2 are computationally indistinguishable

Proof. This follows from the subgroup indistinguishability property of the language L which
states that the distributions D1 = {x : x ∈ L} and D2 = {x : x ∈ L∪L} are computationally
indistinguishable.

G3 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples x← L∪ L
– The challenger computes the encryption of fad,bd(sk) as

ct∗ = (x,Decaps(sk, x⊙ ad)⊙ bd)

– The challenger returns ct∗ to A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 28. Hybrids G2, G3 are identical

Proof. This follows from the homomorphic property of HPS.

G4 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples x← L∪ L
– The challenger computes the encryption of fad,bd(sk) as

ct∗ = (x⊙ (ad)
−1,Decaps(sk, x)⊙ bd)

– The challenger returns ct∗ to A

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 50

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 29. Hybrids G3, G4 are identical

Proof. Since the distributions D1 = x : x← L∪ L, D2 = x⊙ (ad)
−1 : x← L∪ L are iden-

tical, hybrids G3, G4 are identical.

G5 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples x← L∪ L
– The challenger samples r ← L′ and computes the encryption of fad,bd(sk) as

ct∗ = (x⊙ (ad)
−1, r ⊙ bd)

– The challenger returns ct∗ to A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 30. Hybrids G4, G5 are statistically indistinguishable

Proof. This follows from Leakage-Resilient smoothness of HPS HPS. In the adversary’s view,
we have (pk, h(sk), ct∗ = (x⊙(ad)−1,Decaps(sk, x)⊙bd)). We know that pk, h(sk), x,Decaps(sk, x)
is statistically indistinguishable from (pk, h(sk), x, r) for some r ← L′. Hence,(pk, h(sk), ct∗ =
(x⊙(ad)−1,Decaps(sk, x)⊙bd)) must be indistinguishable from (pk, h(sk), ct∗ = (x⊙(ad)−1, r⊙
bd)) else we can create a reduction which breaks the LR-smoothness of HPS.

G6 :

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs (pk, sk)← Setup(1λ, 1S) and sends pk to A1. The challenger also
chooses a bit d← {0, 1}

• Leakage Phase: A1 receives (pk) and outputs a function h ∈ Hλ,S. The challenger
outputs leakage h(sk) such that |h(sk)| < S.

• Query Phase:
– A sends function query (fa0,a1 , fa1,b1) ∈ Fλ,S

– The challenger samples x← L∪ L

© 2024, Indian Institute of Technology Delhi

6.3 From LR-smooth HPS to LR-KDM 51

– The challenger samples r ← L′ and computes the encryption of fad,bd(sk) as
ct∗ = (x, r)

– The challenger returns ct∗ to A

• Challenge Phase: A guesses bit d′. A wins the experiment if d = d′.

Claim 31. Hybrids G5, G6 are identical

Proof. This follows as the distributions {(x, r) : x ← L ∪ L, r ← L′} and {(x ⊙ (ad)
−1, r ⊙

(bd)) : x← L∪ L, r ← L′} are identical

Claim 32. No adversary can win G6 with prob. > 1
2

Proof. In game G6, the bit d is information theoretically hidden from the adversary’s view
as ct∗ is sampled independently. Hence for all adversaries A, prob. that A wins G6 is exactly
1
2

From the above claims, we can see that the probability of any p.p.t A winning in G0 is less
than 1

2
+ negl(λ). Hence, LRKdm is a Leakage-Resilient KDM secure PKE schem.

Finally we show that the HPS constructed in the previous section can be used to build LR-
KDM secure PKE for affine functions. We know that HPS defined over LA is LR-smooth and
homomorphic. Hence, LRKdm is leakage-resilient F−KDM secure for the following function
class F :

F = {fx,y : fx,y(sk) = Decaps(sk, x)⊙ y}

F = {fx,y : fx,y(sk) = gs
⊤x ⊙ gy}

F = {fx,y : fx,y(sk) = gs
⊤x+y}

which is the class of affine functions from {0, 1}m to G. Hence, we have shown a transfor-
mation from DDH to LR-KDM HPS to a secure LR-KDM PKE scheme over the class of
affine functions.

© 2024, Indian Institute of Technology Delhi

Bibliography

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous Hard-
core Bits and Cryptography against Memory Attacks. In Omer Reingold, editor,
Theory of Cryptography, Lecture Notes in Computer Science, pages 474–495,
Berlin, Heidelberg, 2009. Springer.

[BDD22] Pedro Branco, Nico Döttling, and Jesko Dujmović. Rate-1 Incompressible En-
cryption from Standard Assumptions. In Eike Kiltz and Vinod Vaikuntanathan,
editors, Theory of Cryptography, Lecture Notes in Computer Science, pages
33–69, Cham, 2022. Springer Nature Switzerland.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In Proceedings 38th Annual Symposium on
Foundations of Computer Science, pages 394–403, 1997.

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In David Wagner, editor, Advances in
Cryptology – CRYPTO 2008, pages 108–125, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on
the rsa encryption standard pkcs #1. In Hugo Krawczyk, editor, Advances in
Cryptology — CRYPTO ’98, pages 1–12, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. Cryptology ePrint Archive, Paper 2002/100,
2002. https://eprint.iacr.org/2002/100.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. volume 2045/2001,
pages 93–118, 05 2001.

[CS01] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. Cryptology ePrint
Archive, Paper 2001/085, 2001. https://eprint.iacr.org/2001/085.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In Advances in
Cryptology-EUROCRYPT 2004: International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004. Proceedings 23, pages 523–540. Springer, 2004.

[Dzi06] Stefan Dziembowski. On Forward-Secure Storage. In Cynthia Dwork, editor,
Advances in Cryptology - CRYPTO 2006, Lecture Notes in Computer Science,
pages 251–270, Berlin, Heidelberg, 2006. Springer.

52

https://eprint.iacr.org/2002/100
https://eprint.iacr.org/2001/085

BIBLIOGRAPHY 53

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. volume 9,
pages 169–178, 05 2009.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28:270–299, 1984.

[Gof23] Igol Goffman. The mgm breach and the role of idp in modern cyber attacks.
2023.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11, 2012.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010, pages 341–358, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of yao’s garbled circuits.
In Theory of Cryptography Conference, pages 433–458. Springer, 2016.

[JWZ22] Guan Jiaxin, Daniel Wichs, and Mark Zhandry. Incompressible Cryptography,
pages 700–730. 01 2022.

[KKRS24] Venkata Koppula, Abhinav Kumar, Mahesh Sreekumar Rajasree, and Harihar
Swaminathan. Incompressible encryption beyond cpa/cca security. Manuscript
submitted, 2024.

[KM19a] Fuyuki Kitagawa and Takahiro Matsuda. CPA-to-CCA transformation for KDM
security. Cryptology ePrint Archive, Paper 2019/609, 2019. https://eprint.
iacr.org/2019/609.

[KM19b] Fuyuki Kitagawa and Takahiro Matsuda. CPA-to-CCA transformation for KDM
security. Cryptology ePrint Archive, Paper 2019/609, 2019. https://eprint.
iacr.org/2019/609.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. Simple and efficient
KDM-CCA secure public key encryption. Cryptology ePrint Archive, Paper
2019/1012, 2019. https://eprint.iacr.org/2019/1012.

[KW18] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generi-
cally in attribute-based encryption and predicate encryption. Cryptology ePrint
Archive, Paper 2018/847, 2018. https://eprint.iacr.org/2018/847.

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computations. In
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, page 204–212, New York, NY, USA, 1990. Association
for Computing Machinery.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage.
Cryptology ePrint Archive, Paper 2009/105, 2009. https://eprint.iacr.org/
2009/105.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In STOC, pages 427–437, 1990.

© 2024, Indian Institute of Technology Delhi

https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/1012
https://eprint.iacr.org/2018/847
https://eprint.iacr.org/2009/105
https://eprint.iacr.org/2009/105

BIBLIOGRAPHY 54

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package transform. In Eli
Biham, editor, Fast Software Encryption, pages 210–218, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

[RS91] Charles Rackoff and Daniel Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. volume 576, pages 433–444, 08 1991.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[SGV11] Leo Reyzin Boaz Barak Shafi Goldwasser, Yael Kalai and Salil Vadhan. Extrac-
tors and the leftover hash lemma, 2011.

[Wee15] Hoeteck Wee. KDM-security via homomorphic smooth projective hashing. Cryp-
tology ePrint Archive, Paper 2015/721, 2015. https://eprint.iacr.org/
2015/721.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, 1986.

© 2024, Indian Institute of Technology Delhi

https://eprint.iacr.org/2015/721
https://eprint.iacr.org/2015/721

	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	Overview
	Our Results:

	Technical Overview
	Incompressible KDM encryption in the RO model
	Incompressible KDM CCA
	LR-KDM
	Leakage-Resilient Hash Proof System
	Leakage-Resilient Key-Dependent Message PKE Security.

	Preliminaries
	Preliminaries and Notations
	Function Classes
	Average Min-Entropy
	Strong Average Min-Entropy Extractor
	Leftover Hash Lemma
	Non-Interactive Zero Knowledge proof systems (NIZK)
	Garbling schemes
	Symmetric and Public Key Encryption

	Variants of Key-Dependent Message (KDM) Security
	KDM SKE encryption
	KDM PKE encryption
	KDM Incompressible SKE encryption.
	KDM Incompressible PKE Security.
	Leakage-Resilient Key-Dependent Message PKE Security.

	KDM Incompressible encryption in the random oracle model
	Incompressible KDM CCA
	LR-KDM from Hash Proof Systems
	Definitions
	Leakage-Resilient Hash Proof System
	Leakage-Resilient KDM PKE

	Constructing LR-smooth homomorphic HPS from DDH
	From LR-smooth HPS to LR-KDM

