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ABSTRACT

In the realm of theoretical cryptography, achieving robust security has led to various defi-
nitions for secret key (SKE) and public key encryption (PKE). CPA and CCA security are
gold standards, but they sometimes fall short as cryptographic applications evolve. One
of the shortcomings is that the public key is anonymous. CPA security ensures that the
message is hidden but it does not guarantee that the ciphertext conceals the public key(or
the receiver’s identity). Bellare et al. introduced the concept of anonymous encryption to
counter this. Private key security models are widely understood, but usually, these models
presuppose that the secret key cannot be disclosed. If the secret key is leaked, an adversary
with only a short digest of the ciphertext can still preserve semantic security. This no-
tion, called incompressible encryption, was initially proposed by Dziembowski for SKE and
later extended to PKE by Guan, Wichs, and Zhandry. Incompressible encryption strength-
ens CPA security through a security game where the adversary compresses the ciphertext
before obtaining the secret key.

This thesis extends incompressible encryption to include anonymity. While typically as-
sociated with public-key settings, anonymity is also relevant in incompressible secret-key
settings where the secret key may be obtained later. This work aims to develop more robust
encryption schemes for modern cryptographic applications.

KEYWORDS: anonymity, incompressible-encryption
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Chapter 1

INTRODUCTION

Cryptography is the science of securing communication and data against unauthorized ac-
cess and manipulation. Its main goal is to ensure that information remains confidential,
integral, and authentic even in the presence of adversaries. This is done using cryptographic
algorithms and protocols that transform plaintext information into encrypted data, that is
only accessible to intended recipients having the correct key. Encryption is one of the basic
concepts in cryptography. It is the process of converting plain text into an unreadable ver-
sion called ciphertext using an algorithm and encryption key. Decryption is just the reverse
of encryption, where the ciphertext is converted back into plain text using a decryption
key. There are two main types of encryption: secret key encryption (SKE) and public key
encryption (PKE).

Secret Key Encryption: SKE, which is also known as symmetric encryption, uses the
same key for both encryption and decryption. This implies that both the sender and the
receiver have to have the same secret key and should not disclose it to anyone. Even though
SKE is computationally efficient and simple, it has problems in securely transferring the key
between the two parties, particularly through an insecure channel.

Public Key Encryption: PKE, which is also known as asymmetric encryption, addresses
the key distribution problem by using two different keys: a public key and a secret key. The
public key is made available to the public and is used in the encryption process while the
secret key is kept secure and it is used in the decryption process. This makes it possible for
a sender to encrypt the message and send it to a receiver without having to first exchange
secret keys. This method simplifies key distribution but is computationally more intensive.
PKE is the foundation of most of the contemporary cryptographic procedures and is crucial
for safe communication over the internet.

1.1 Security Models

As cryptographic techniques have evolved, so have the methods attackers use to break
them. To counteract these threats, the cryptographic community has established several
security definitions. Two widely recognized are security against chosen plaintext attacks
(CPA) [GM82] and security against chosen ciphertext attacks (CCA) [NY90, RS91].

CPA Security: In a chosen plaintext attack, the adversary can choose arbitrary plaintexts
and obtain their corresponding ciphertexts. CPA security ensures that even with this ca-
pability, the adversary cannot learn anything about the plaintexts beyond what they could
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guess without those ciphertexts. Essentially, CPA security guarantees that the encryption
scheme is semantically secure, meaning it is computationally infeasible for an adversary to
distinguish between the encryptions of any two chosen plaintexts.

The CPA security game between an adversary A and a challenger C is defined as follows:

• Initialization phase:
– The challenger C generates a key k using the key generation algorithm KeyGen

and also generates a random bit b ∈ {0, 1}.

• Query Phase:
– The adversary A can query the challenger C with any plaintext m of its choice.

– The challenger responds with the ciphertext ct = Enc(k,m).

• Challenge Phase:
– The adversary A sends two plaintexts m0 and m1 to C.
– The challenger C computes the challenge ciphertext as ct∗ = Enc(pk,mb).

– The ciphertext ct∗ is sent to the adversary A.

• Guess Phase:
– The adversary A outputs a guess b′ ∈ {0, 1} for the value of b.

– A wins the game if b′ = b.

The encryption scheme is considered CPA secure if there exists a negligible function negl(·)
such that for all λ,

AdvA =

∣∣∣∣Pr[A wins ]− 1

2

∣∣∣∣ ≤ negl(λ)

CCA Security: A chosen ciphertext attack is more powerful than a CPA, as it allows
the adversary to choose ciphertexts and obtain their corresponding plaintexts, except for
the challenge ciphertext that they are trying to break. CCA security provides a stronger
guarantee by ensuring that even with this additional capability, the adversary cannot decrypt
the challenge ciphertext or gain any useful information from it. CCA-secure schemes are
designed to resist adaptive attacks, making them robust against a broader range of potential
threats.

The CCA security game between an adversary A and a challenger C is defined as follows:

• Initialization phase:
– The challenger C generates a key k using the key generation algorithm KeyGen

and also samples a random bit b ∈ {0, 1}.

• Pre-Challenge Query Phase: The adversary A sends polynomially many queries.
Each query can either be an encryption query or a decryption query.

– Encryption Query: The adversary A sends a message m. The challenger
responds with the ciphertext ct = Enc(k,m).

© 2024, Indian Institute of Technology Delhi



1.2 Anonymous Encryption 3

– Decryption Query:The adversary sends any ciphertext ct′ to receive the corre-
sponding message m′ = Dec(k, ct′).

• Challenge Phase:
– The adversary A sends two messages m0 and m1.
– The challenger C computes the challenge ciphertext ct∗ = Enc(k,mb).
– The ciphertext ct∗ is sent to the adversary A.

• Post-Challenge Query Phase: The adversary A sends polynomially many queries.
Each query can either be an encryption query or a decryption query.

– Encryption Query: The adversary A sends a message m. The challenger
responds with the ciphertext ct = Enc(k,m).

– Decryption Query:The adversary sends any ciphertext ct′(̸= ct∗) to receive the
corresponding message m′ = Dec(k, ct′).

• Guess Phase:
– The adversary A outputs a guess b′ ∈ {0, 1} for the value of b.
– The adversary A wins the game if b′ = b.

The encryption scheme is considered CCA secure if there exists a negligible function
negl(·) such that for all λ,

AdvA =

∣∣∣∣Pr[A wins ]− 1

2

∣∣∣∣ ≤ negl(λ)

Similarly, we can define these CPA and CCA games for the PKE setting.

1.2 Anonymous Encryption

While CPA and CCA security are considered the gold standards in cryptographic security,
evolving applications and threats have revealed their limitations. One such limitation is the
inability to guarantee the anonymity of the public key in PKE schemes. This has led to
the development of encryption schemes that ensure that the ciphertext does not reveal the
public key used (that is, the intended recipient of the message). Encryption schemes that
fulfill this requirement are called anonymous encryption schemes.

Anonymity in encryption is crucial in scenarios where the mere knowledge of the recipient
can compromise privacy or security. For example, in anonymous communication systems
or whistleblower platforms, the ability to conceal the recipient’s identity is as important as
hiding the message content. Bellare et al. [BBDP01] highlighted the importance of public
key anonymity and proposed encryption schemes that address this requirement.

The above security notion is now very well studied, and we have several efficient constructions
for anonymous encryption [BBDP01, HSHI02, ABN10, Moh10, HLH+22, GMP22], based on
different computational assumptions.

© 2024, Indian Institute of Technology Delhi



1.3 Incompressible Encryption 4

1.3 Incompressible Encryption

Another advanced concept in cryptography is incompressible encryption. This concept ex-
tends traditional encryption security to scenarios where the adversary eventually learns the
secret key. This concept of incompressible encryption means that even if the adversary gets
the secret key and a short digest of the ciphertext, they cannot produce the original mes-
sage. Studied by Dziembowzki [Dzi06] for SKE, who proposed the notion of forward secure
storage. Guan, Wichs, and Zhandry [GWZ22] extended this idea to the public key setting,
introducing the concept of incompressible encryption.

Incompressibility strengthens CPA security by incorporating an additional challenge: the
adversary must compress the ciphertext into a short digest before receiving the secret key
and then attempt to guess the original message. This security notion is particularly relevant
in scenarios where the secret key may eventually be exposed, but the ciphertexts remain
secure as long as they are not stored in full. Similarly, one can define incompressible CCA
security.

An important parameter in incompressible encryption schemes is the rate, defined as the
ratio of the size of the message to the size of the ciphertext. Recent research [GWZ22,
BDD22, GWZ23] has focused on developing rate-1 CPA/CCA secure incompressible en-
cryption schemes, where the ciphertext size is close to the message size, ensuring efficiency
without compromising security.

In this work, we extend the concept of an incompressible encryption scheme to anonymity.
While anonymity is usually studied in the public key setting, it’s notable that in the incom-
pressible secret-key setting, anonymity remains relevant since adversaries can later obtain
the secret key used in encryption.

1.4 Results

We outline the various schemes proposed in this thesis. We proved that the incompressible
SKE schemes proposed by Dziembowski [Dzi06] exhibits anonymity. This gives us two
anonymous SKE schemes secure against adversaries that make a single encryption query. We
also show that the scheme can be modified using programmable PRFs to achieve anonymous
incompressible security against unbounded encryption queries. Notably, this is the first non-
trivial1 incompressible SKE scheme that can handle unbounded encryption queries.

We demonstrate that the rate-1 incompressible SKE scheme proposed by Branco et al.
[BDD22] can be modified to achieve anonymity and security against CPA. Furthermore,

1One can certainly use an incompressible PKE scheme (for example, the ones proposed by Guan et
al. [GWZ22] and Branco et al. [BDD22]) to build an SKE scheme that handles unbounded encryption
queries.

© 2024, Indian Institute of Technology Delhi



1.5 Related Works in the Incompressible Setting 5

we show that the hybrid encryption proposed by Branco et al. that achieves rate-1 CPA
secure incompressible PKE using programmable HPS can achieve anonymity provided the
underlying HPS and incompressible SKE schemes are anonymous.

This work is a part of a joint effort as detailed in Koppula et al. [KKRS24].

1.5 Related Works in the Incompressible Setting

Dziembowski [Dzi06] pioneered the first incompressible encryption scheme, a SKE scheme
that offers security against unbounded adversaries. This foundational work laid the ground-
work for subsequent research in the field. More recently, Guan et al. [GWZ22] introduced the
first incompressible PKE schemes. Their initial construction was based on any CPA-secure
PKE scheme but had a low rate, limiting its practical efficiency. To address this, they devel-
oped a second construction based on indistinguishability obfuscation (iO) [GGH+16, JLS21],
achieving a rate of 1.

Further advancements were made by Branco et al. [BDD22], which was built on the concept
of incompressible encodings [MW20] and variants of hash proof systems. They successfully
created rate-1 constructions for both incompressible SKE and CCA secure incompressible
PKE schemes. Additionally, they proposed a scheme within the ideal cipher model, broad-
ening the scope of their constructions.

Expanding the application of incompressible encryption, Guan et al. [GWZ23] explored
its extension to a multi-user environment. They proposed schemes that operate within
the random oracle model, demonstrating the versatility and potential of incompressible
encryption in diverse cryptographic contexts.

In recent development, [GKRV24] proposed an extension of incompressibility to the func-
tional encryption. Their work provides incompressible attribute-based encryption for cir-
cuits based on standard assumptions, achieving optimal efficiency with short secret keys.
Additionally, they propose incompressible functional encryption for circuits obtained from
non-incompressible functional encryption, offering two variants: the one where the secret
keys are short one with relatively small secret keys, and another with large secret keys.
These advancements represent a significant leap in the efficiency and practical applicability
of incompressible encryption.

1.6 Open Problems

This work initiates the study of anonymity in the incompressibility setting. Below, we list
a few interesting open questions:

• Do we need programmable PRFs to construct incompressible SKE that can handle

© 2024, Indian Institute of Technology Delhi



1.6 Open Problems 6

unbounded encryption queries? In particular, can we build incompressible SKE that
can handle unbounded encryption queries, using only one way functions?

• Can we construct a rate-1 anonymous incompressible secret key encryption (SKE)
scheme in the random oracle model?

© 2024, Indian Institute of Technology Delhi



Chapter 2

Technical Overview

In this technical overview, we present a sketch of the constructions and offer a high-level
proof of their security. Our inspiration for these schemes stems from Dziembowski’s con-
struction [Dzi06], so we commence with a brief overview of his scheme.

Dziembowski’s Incompressible SKE Scheme. The secret key consists of a pair of
strings (s1, s2) where s1 is a random seed for an extractor Ext, and s2 is a random string
of the same length as the message to be encrypted. During encryption, a random string R

is generated and applied to the extractor to obtain k′ ← Ext(R; s1). A one-time key k is
generated by XORing k′ with s2. This key is then used to encrypt the message m, resulting
in the ciphertext (R, t) where t = m⊕ k.

To demonstrate security against unbounded adversaries, the proof employs a series of hybrid
games. In the first hybrid game, the generation of the secret key is delayed. Instead, both R

and t are generated randomly. Later, to derive the secret key (s1, s2), s1 is chosen randomly
while s2 is set to Ext(R; s1)⊕ t⊕m. It is evident that this hybrid game is identical to the
original incompressible security game.

In the subsequent hybrid, s2 is chosen uniformly at random. The indistinguishability ar-
gument relies on the properties of the extractor Ext. Specifically, since R is random and
independent of s1, the value k′ = Ext(R; s1) appears uniformly random, ensuring that k and
consequently t = m⊕k are also uniformly random and independent of the message m. This
ensures that the adversary gains no advantage, thereby proving the scheme’s security.

2.1 Anonymous Incompressible Encryption

SKE schemes. CCA secure against single encryption. We initially demonstrate that
Dziembowski’s incompressible scheme also ensures anonymity. As outlined in the preceding
section, in proving the scheme’s incompressibility, the final hybrid phase involves generating
truly random strings as both the ciphertext and secret key. This absence of any correlation
between the ciphertext and secret key inherently establishes anonymity.

Secure against unbounded encryptions. To enhance the scheme against unbounded encryp-
tion queries, we employ a programmable pseudorandom function (PPRF). A PPRF is a type
of PRF that enables the holder of the PRF key k to perform a specific action - the holder
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can produce a programmed key kx∗ , such that when the PRF is evaluated using kx∗ at x∗,
it yields y∗ (where the values x∗ and y∗ are freely chosen by the holder), while maintaining
consistency with k at any other point. In Dziembowski’s scheme, a ciphertext comprises of
(R, t), where t = m ⊕ k. Instead of generating a one-time key k, we utilize the PPRF to
generate fresh keys for each encryption call. Specifically, k = Ext(R; s1)⊕PPRF.Eval(s2, R),
where s2 represents a PRF key. To prove security, we leverage the capability to lazily sample
s1 and s2 by reprogramming s2 at R∗ as necessary where (R∗, t∗) is the challenge cipher-
text. One might question whether reprogramming is required at all points R where (R, t)

represents the ciphertext generated by the encryption oracle. We demonstrate that this is
unnecessary due to the privately programmable security of the PPRF and by not deferring
the generation of s1. For more details, refer to Section 4.2.

Rate-1 secure against single encryption. Moving forward, we proceed to establish that
the rate-1 incompressible SKE scheme proposed by Branco et al. [BDD22] also ensures
anonymity. A ciphertext of this scheme also consists of two part where the first part is
encoding of m⊕ PRG(s) and second part is a one time pad of the PRG seed s. We achieve
anonymity by incorporating an additional pseudorandom generator (PRG) to obfuscate the
first part of the ciphertext. According to the analysis, this PRG contributes to making
the ciphertext seem random even when the secret key is known. For further details, see
Section 4.3.

However, unlike in the Dziembowski’s scheme, we cannot enhance Branco et al.’s scheme to
achieve security against unbounded queries using a PPRF. The reason is that the secret key
consists of a common reference string (CRS) for a rate-1 incompressible encoding [MW20].
Similar to the proof for the security of Dziembowski’s scheme, the deferring of the generation
of the secret key to the end of the game is employed in one of the hybrids. In other words,
the CRS is inaccessible during the encryption queries. Recall, in our previous scheme, we
do not defer the generation of s1 for this very reason.

PKE scheme. We utilize Branco et al.’s transformation that constructs a CPA secure in-
compressible PKE from incompressible SKE and programmable hash proof system (HPS).
To ensure anonymity, we show that we require an anonymous incompressible SKE and an
anonymous version of a programmable HPS. Recall that an HPS is associated with a lan-
guage L ⊂ X and Y ⊂ X \ L, generated during the setup phase. For our purpose, we
define anonymity as follows - for two randomly generated instances of HPS with associated
(L0, Y0) and (L1, Y1), an element randomly chosen from Y0 is computationally indistinguish-
able from an element randomly chosen from Y1. A quick examination of the LWE-based
programmable HPS construction provided by Branco et al. indicates the anonymity of their
scheme. In certain stages of our proof, we only require the anonymity property of the SKE
scheme. At one crucial step, we rely on the scheme being both anonymous and incompress-
ible simultaneously. Hence, we have formulated our anonymous incompressible security

© 2024, Indian Institute of Technology Delhi
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game that encompass both these features. For the definition of anonymous incompressible
security game, refer Definition 12 and for more details on the proof for the security of the
anonymous incompressible PKE scheme, see Section 4.4.

© 2024, Indian Institute of Technology Delhi



Chapter 3

Preliminaries

Throughout this thesis, for any finite set X, x ← X denotes picking an element x from X

uniformly at random. Similarly, for any distribution D, x← D denotes an element x drawn
from the distribution D. For any natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}.
For any n-bit string x ∈ {0, 1}n, we denote xi as the ith bit of x.

3.1 Randomness Extractors

Definition 1 (Strong Average Min-Entropy Extractor). A (k, ϵ)-strong average min-entropy
extractor is an efficient function Ext : {0, 1}d × {0, 1}n → {0, 1}m such that for all jointly
distributed random variable X, Y where X takes values {0, 1}d and H̃∞(X|Y ) ≥ k, we have
(Ud,Ext(X,Un), Y ) ≈ϵ (Ud, Um, Y ) where Ud, Un, Um are uniformly random strings of length
d, n,m respectively. Here H∞(X|Y ) = − log E

y←Y
(maxx Pr(X = x|Y = y)) is the average

min-entropy of X conditioned on Y .

Theorem 2. There exists an explicit efficient (k, 2−λ)-strong average min-entropy extractor
Ext : {0, 1}d × {0, 1}n → {0, 1}λ such that k = poly(λ), d = poly(λ), n = S + k and the
depth of the extractor circuit is poly(λ, log(n)).

We will reply on the following theorem that establishes matrix-vector multiplication is a
strong average min-entropy extractor.

Theorem 3 (Leftover Hash Lemma, [DRS04]). Let n, ℓ, λ, S ∈ N such that ℓ = n +

2 log(2λ) + O(1). Then, the distribution (C,Cs, f(s)) is 1/2λ+1-close to the distribution
(C, t, f(s)) where C ← {0, 1}n×(ℓ+S) , s← {0, 1}ℓ+S , t← {0, 1}n and f is any function from
{0, 1}ℓ+S → {0, 1}S.

3.2 Programmable Pseudorandom Functions

A programmable pseudorandom functions PPRF = (Setup,PEval,Eval) with key space {Kλ}λ,
input space {Xλ}λ and output space {Yλ}λ consists of the following algorithms.

• Setup(1λ) : The setup algorithm is a randomized algorithm that takes as input the
security parameter 1λ and outputs a master secret key msk ∈ Kλ.
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• msk, x, y) : The program algorithm takes input as the master secret key msk, an input
x ∈ Xλ and an output y ∈ Yλ. It outputs a secret key k ∈ Kλ.

• PEval(k, x) : The programmed evaluation algorithm is a deterministic algorithm that
takes as input a secret key k ∈ Kλ and x ∈ Xλ and outputs y ∈ Yλ.

• Eval(msk, x) : The evaluation algorithm is a deterministic algorithm that takes as input
a master secret key msk ∈ Kλ and x ∈ Xλ and outputs y ∈ Yλ.

Correctness. A programmable PRF is correct if for all msk← Setup(1λ), all inputs x ∈ Xλ,
setting k ← msk, x∗, y∗), we have

PEval(k, x) =

y∗ if x = x∗

Eval(msk, x) otherwise

Definition 4 (Privacy). A programmable PRF is private if for all efficient A, the following
quantity is negligible:

Advppriv[A] = |Pr[Exptppriv0 (A) = 1]− Pr[Exptppriv1 (A) = 1]|

where Exptpprivb (A) is given below:

Exptpprivb is defined between a challenger and an adversary A for λ ∈ N, which can make
evaluation and challenge queries.

• The challenger obtains msk← Setup(1λ) and samples y∗ ← Yλ uniformly at random.

• The challenger responds to each oracle query type made by A in the following manner:

– Evaluation Oracle: On input x ∈ Xλ, the challenger returns y ← Eval(msk, x).

– Challenge Oracle: For a pair of inputs x0, x1 ∈ Xλ, the challenger returns
k ← msk, xb, y

∗). Note that A can make only one query to Challenge Oracle and
does not query the evaluation oracle on these points.

• A outputs a bit b′ ∈ {0, 1}, which is also output by Exptpprivb

Theorem 5 ([PS18]). There exists privately programmable PRF from LWE assumptions.

3.3 HILL-Entropic Encodings

We recall the notion of HILL-entropic encoding.

Definition 6 (HILL-Entropic Encoding). An (α, β)-HILL-entropic encoding scheme con-
sists of three PPT algorithms:

© 2024, Indian Institute of Technology Delhi



3.4 Programmable Hash Proof System 12

• Setup(1λ) : The setup algorithm takes the security parameter 1λ as input and outputs
a common random string crs.

• Enc(crs,m) : The encoding algorithm takes a common random string crs and a message
m producing an encoding c.

• Dec(crs, c) : The decoding algorithm takes a common random string crs, a encoding c
and produces a message m.

Correctness. There exists a negligible negl(·) such that for all λ ∈ N and all m ∈ {0, 1}∗

we have
Pr[Dec(crs,Enc(crs,m)) = m] = 1− negl(λ)

α-Expansion. For all λ, k ∈ N and all m ∈ {0, 1}k we have

|Enc(crs,m)| ≤ α(λ, k)

β-Hill-Entropy. There exists an algorithm Sim such that for any polynomial k = k(λ) and
any ensamble of message m = {mλ}, consider the following "real" experiment:

• crs← Setup(1λ)

• c← Enc(crs,mλ)

and let CRS,C denote the random variables for the corresponding values in the "real"
experiment. Also, consider the following "simulated" experiment:

• (crs′, c′)← Sim(1λ,mλ)

and let CRS ′, C ′ denote the random variables for the corresponding values in the "sim-
ulated" experiment. We require that (CRS,C) ≈c (CRS ′, C ′) and H̃∞(C

′|CRS ′) ≥ β(λ, k)

We call a (α, β)-HILL-entropic encoding good if α(λ, k) = k(1 + o(1)) + poly(λ) and
β(λ, k) = k(1− o(1))− poly(λ).

Theorem 7 ([MW20]). There exists good HILL-entropic encoding from DCR and LWE
assumptions in the CRS model.

3.4 Programmable Hash Proof System

Definition 8 (Y -Programmable Hash Proof System). A Y -programmable hash proof system
is defined over a NP language L ⊂ X, where each element x in the language L has a witness
w. Additionally there exist a subset Y ⊂ X \ L and efficient ways to sample a language
L with the corresponding trapdoor tdL, an x ∈ L with its witness w and x ∈ Y with a
corresponding trapdoor tdx.

© 2024, Indian Institute of Technology Delhi
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• Gen(1λ, 1k) : The language generation algorithm takes input as the security parameter
λ and the encapsulated key size k. It outputs public parameters p defining a language
L and a trapdoor tdL to that language.

• SampL(p) : Given the public parameter p, it outputs an element x ∈ L with corre-
sponding witness w.

• SampY (p, tdL) : Given the public parameter p and a trapdoor tdL, it outputs x ∈ Y
and the corresponding trapdoor tdx.

The hash proof system itself consists of these algorithms:

• KeyGen(p) : The keygen algorithm takes as input the public parameter p and outputs
a public key pk and a secret key sk.

• Encap(pk, x, w) : The encapsulation algorithm takes input as the public key pk, an
element x and a witness w. It outputs an encapsulated key k.

• Decap(sk, x) : The decapsulation algorithm takes input as the secret key sk and any
x ∈ X . It outputs an encapsulated key k. Note that x can be outside L.

• tdL, tdx, sk, x, k) : The programming algorithm takes as input two trapdoors tdL, tdx, a
secret key sk, an element x ∈ Y and an encapsulated key k. It outputs a new secret
key sk′.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range of
KeyGen(p), x ∈ L and for k← Encap(pk, x, w), we have k = Decap(sk, x) with |k| = k.

Language Indistinguishability. For all λ, k ∈ N, (p, tdL) ← Gen(1λ, 1k), x ← SampL(p)
and (x∗, tdx∗)← SampY (p, tdL), we have the computational indistinguishability

{p, x} ≈c {p, x∗}

Programmability. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range
of KeyGen(p), k ∈ {0, 1}k, (x, tdx) in the range of SampY (p, tdL) and sk′ ← tdL, tdx, sk, x, k),
we have

Decap(sk′, x) = k

Y -programmable Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k),
(pk, sk) in the range of KeyGen(p), k ∈ {0, 1}k, (x, tdx) in the range of SampY (p, tdL) and
sk′ ← tdL, tdx, sk, x, k), we have statistical indistinguishability

(pk, sk, x) ≈s (pk, sk
′, x)
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Anonymity. For all λ, k ∈ N, {(pi, tdLi)← Gen(1λ, 1k)}i∈{0,1} and {(x∗i , tdx∗
i
)←

SampY (pi, tdLi)}i∈{0,1}, we have the computational indistinguishability

{p0, p1, x∗0} ≈c {p0, p1, x∗1}

Branco et al. [BDD22] provided constructions for programmable hash proof system based on
LWE and DDH. In the LWE construction, the public parameter is a matrix p = A ∈ Zn×n

q

where the trapdoor is tdL = (B, T ) where B is statistically close to uniform. Therefore, the
construction is anonymous.

Theorem 9 ([BDD22]). There exists anonymous programmable hash proof systems from
LWE assumptions.

3.5 Incompressible Secret Key Encryption

A secret key encryption scheme SKE = (Setup,Enc,Dec) with message space {Mλ}λ consists
of the following PPT algorithms.

• Setup(1λ, 1S) : The setup algorithm is a randomized algorithm that takes as input the
security parameter λ and a parameter 1S and outputs a secret key sk.

• Enc(sk,m) : The encryption algorithm is a randomized algorithm takes as input a
secret key sk and a message m ∈Mλ and outputs a ciphertext ct.

• Dec(sk, ct) : The decryption algorithm takes as input a secret key sk and a ciphertext
ct and outputs either a message m ∈Mλ or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, S ∈ N,m ∈ Mλ and sk ←
Setup(1λ, 1S),

Pr[Dec(sk,Enc(sk,m)) = m] = 1

where the probability is over the random bits used in the encryption algorithm.

Incompressible SKE Security (No Queries). Consider the following experiment with
an adversary A = (A1,A2).

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs sk← Setup(1λ, 1S).

• Challenge Phase: A1 outputs two message m0,m1, along with an auxiliary infor-
mation aux. The challenger randomly chooses b ∈ {0, 1} and computes a ciphertext
ct∗ = Enc(sk,mb) and sends it to A1.

• First Response Phase: A1 computes a state st such that |st| ≤ S.
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• Second Response Phase: A2 receives (sk, aux, st) and outputs b′. A wins the ex-
periment if b = b′.

Definition 10. An SKE scheme is said to be incompressible secure if for all PPT adver-
saries A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

The ratio between a message’s size and its corresponding ciphertext size is a crucial
parameter in any encryption scheme. This ratio is referred to as the rate of the scheme. For
an efficient scheme, it’s essential for this ratio to approach 1.

Definition 11. Let SKE = (SKE.Setup, SKE.Enc, SKE.Dec) be an encryption scheme. Then,
the rate of the scheme is defined as |m|/|ct| where m is an element from the message space
and ct← SKE.Enc(sk,m) for any sk← SKE.Setup(1λ). We denote the rate as 1 if

|m|
|ct|

= |m|+ o(|m|) · poly(λ)

as |m| tends to infinity.

© 2024, Indian Institute of Technology Delhi



Chapter 4

Anonymous Incompressible Encryption schemes

In this chapter, we define anonymous incompressible encryption and present two construc-
tions for anonymous incompressible SKE and one construction for anonymous incompress-
ible PKE. The first SKE construction achieves a rate of 1/2 but remains secure against
unbounded encryption queries. Conversely, the second SKE construction achieves an opti-
mal rate of 1 but is unable to manage encryption queries. The third construction which is
PKE handles encryption queries.

4.1 Anonymous Incompressible Enryption: Definition

In this section, we will define the anonymous version of the incompressible security game
for SKE setting. Similar to the incompressible SKE schemes, we will consider two adver-
saries A1,A2. The challenger begins the game by generating two secret keys (sk1, sk2). In
the challenge phase, the first adversary A1 will send two messages (m0,m1). It receives
the complete challenge ciphertext which is an encryption of mb using skb and produces a
compressed version of the challenge ciphertext. The second adversary A2 is provided with
two secret keys, compressed challenge ciphertext which was created by A1.

Definition 12. (Anonymous Incompressible SKE with Unbounded Queries Security). Let
SKE = (Setup,Enc,Dec) be an incompressible SKE scheme. Consider the following experi-
ment with an adversary A = (A1,A2).

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S.
The challenger runs {ski}i∈{0,1} ← Setup(1λ, 1S).

• Pre-Challenge Query Phase: A1 is allowed to make an unbounded number of
queries. For each query (i,m)

– The challenger computes ct← SKE.Enc(ski,m) and returns ct to Adv1.

• Challenge Phase: A1 outputs a (m0,m1), along with an auxiliary information aux.
The challenger randomly chooses b ∈ {0, 1} and computes a ciphertext ct∗ = Enc(skb,mb)
and sends it to A1.

• Post-Challenge Query Phase: A1 is allowed to make an unbounded number of
queries. For each query (i,m)

– The challenger computes ct← SKE.Enc(ski,m) and returns ct to Adv1.

• First Response Phase: A1 computes a state st such that |st| ≤ S.
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• Second Response Phase: A2 receives ({ski}i∈{0,1} , aux, st) and outputs b′. A wins
the experiment if b = b′.

Definition 13. An SKE scheme is said to be anonymous incompressible with unbounded
queries secure if for all PPT adversaries A, there exists a negligible function negl(·) such
that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

We also define a version where the first adversary does not have access to the encryption
oracle.

Definition 14. An SKE scheme is said to be anonymous incompressible secure if for all
PPT adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N, S ∈ N,

Pr[A wins in the above experiment] ≤ 1

2
+ negl(λ)

where A1 is restricted from making any encryption queries during the pre-challenge and
post-challenge query phases.

4.2 Anonymous Incompressible SKE with Unbounded Queries

This scheme closely resembles the incompressible symmetric key encryption scheme proposed
by Dziembowski [Dzi06]. Let PPRF = (PPRF.Setup,PPRF.Program,PPRF.PEval,PPRF.Eval)

be a private programmable pseudorandom function with domain {0, 1}S+poly(λ) and range
{0, 1}λ, Ext : {0, 1}S+poly(λ) × {0, 1}ℓ → {0, 1}λ be a strong average min-entropy extractor
where ℓ = poly(λ), and PRG : {0, 1}λ → {0, 1}S+poly(λ) be a secure pseudorandom generator.

• Setup(1λ, 1S) : The setup algorithm takes a input the security parameter 1λ and a
parameter 1S. It samples k1 ← {0, 1}ℓ. It generates msk ← PPRF.Setup(1λ) and
samples r ← {0, 1}λ uniformly at random. It computes k2 ← PPRF.Program(msk, 0̄, r)
and sets sk = (k1, k2).

• Enc(sk,m) : Let sk = (k1, k2). The encryption algorithm takes as input the secret key
sk and a message m. It first randomly generates R ← {0, 1}S+poly(λ) and computes
s ← Ext(R; k1) ⊕ PPRF.PEval(k2, R). It computes ske.ct ← PRG(s) ⊕m and returns
ct = (R, ske.ct).

• Dec(sk, ct): Let sk = (k1, k2) and ct = (R, ske.ct). The decryption algorithm takes as
input the secret key sk and a ciphertext ct. It computes s ← PPRF.PEval(k2, R) ⊕
Ext(R; k1) and returns m← ske.ct⊕ PRG(s).

Correctness: The correctness of the scheme is straightforward. Let ct = (R, ske.ct) denote
an encryption of m using a secret key sk = (k1, k2). Here, ske.ct ← PRG(s) ⊕m, where s
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is generated by computing s ← Ext(R; k1)⊕ PPRF.PEval(k2, R). The decryption algorithm
initiates by computing s in the same manner and then derives m by computing ske.ct ⊕
PRG(s).

Rate: Let ct = (R, ske.ct). The ciphertext size is |R| + |ske.ct|. Observe that |R| =
S + poly(λ) whereas |ske.ct| = |m|. For the best parameter of S which is S = |m| − poly(λ),
we get |ct| = 2|m|. Therefore, the rate is 1/2.

Theorem 15. Let PPRF = (PPRF.Setup,PPRF.Program,PPRF.PEval,PPRF.Eval) be a pri-
vate programmable PRF, PRG is a secure PRG and Ext be a strong average min-entropy ex-
tractor, then the above scheme is an anonymous incompressible SKE scheme secure against
unbounded encryption queries.

Proof. We will show that the above scheme is secure using a series of hybrid arguments.

G0: This is the incompressible anonymous security game where the challenger randomly
chooses b ∈ {0, 1} and encrypts one of mb for using sk(b) given by A1.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.
3. It samples {r(d)}d∈{0,1} uniformly at random.

4. It computes {k(d)
2 ← PPRF.Program(msk(d), 0̄(d), r(d))}d∈{0,1}.

5. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.PEval(k

(i)
2 , R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates R∗.

4. It computes s∗ ← Ext(R∗, k
(b)
1 )⊕ PPRF.PEval(k

(b)
2 , R∗).

5. It computes ske.ct∗ ← mb ⊕ PRG(s∗).

6. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.
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2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.PEval(k

(i)
2 , R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sets ct = (R, ske.ct) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. The challenger sends (

{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

2. A2 outputs a bit b′ ∈ {0, 1}.

G1: The challenger programs the master secret key at R∗ instead of 0̄.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.
3. It samples {r(d)}d∈{0,1} uniformly at random.

4. It randomly generates R∗.

5. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

6. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.PEval(k

(i)
2 , R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates R∗.

4. It computes s∗ ← Ext(R∗, k
(b)
1 )⊕ PPRF.PEval(k

(b)
2 , R∗).

5. It computes ske.ct∗ ← mb ⊕ PRG(s∗).

6. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.PEval(k

(i)
2 , R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.
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• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. The challenger sends (

{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

2. A2 outputs a bit b′ ∈ {0, 1}.

G2: The challenger uses msk(d) instead of k(d)
2 in the Query Phases and the programmed

keys k
(d)
2 are generated in the Second Response phase.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.

3. It samples {r(d)}d∈{0,1} uniformly at random.

4. It randomly generates R∗.

5. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

6. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.

3. It samples r(b) uniformly at random.

4. It computes s∗ ← Ext(R∗, k
(b)
1 )⊕ r(b).

5. It computes ske.ct∗ ← mb ⊕ PRG(s∗).

6. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sets ct = (R, ske.ct) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.
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• Second Response Phase:
1. It samples r(1−b) uniformly at random.

2. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

3. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

4. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

5. A2 outputs a bit b′ ∈ {0, 1}.

G3: The challenger randomly generates s∗ in the Challenge Phase.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.
3. It randomly generates R∗.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.

3. It samples r(b) uniformly at random.

4. It computes s∗ ← Ext(R∗, k
(b)
1 )⊕ r(b).

5. It randomly generates s∗.

6. It computes ske.ct∗ ← mb ⊕ PRG(s∗).

7. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
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1. It samples r(1−b) uniformly at random.

2. It sets r(b) = Ext(R∗; k
(b)
1 )⊕ s∗.

3. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

4. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

5. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

6. A2 outputs a bit b′ ∈ {0, 1}.

G4: The challenger randomly generates r(b) in the Second Response Phase.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.
3. It randomly generates R∗.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗.

4. It computes ske.ct∗ ← mb ⊕ PRG(s∗).

5. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends c = (R, ske.ct) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. It samples r(1−b) uniformly at random.

2. It randomly generates r(b).

3. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

© 2024, Indian Institute of Technology Delhi



4.2 Anonymous Incompressible SKE with Unbounded Queries 23

4. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

5. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

6. A2 outputs a bit b′ ∈ {0, 1}.

G5: The challenger randomly generates ske.ct∗ in the Challenge Phase.

• Initialization Phase:
1. The challenger randomly generates {k(d)

1 }d∈{0,1}.

2. It generate {msk(d) ← PPRF.Setup(1λ)}d∈{0,1}.
3. It randomly generates R∗.

• Pre-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends ct = (R, ske.ct) to A1.

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗.

4. It randomly generates ske.ct∗.

5. It sends ct∗ = (R∗, ske.ct∗) to A1.

• Post-Challenge Query Phase: For each query (i,m) from A1,
1. The challenger randomly generates R.

2. It computes s← Ext(R, k
(i)
1 )⊕ PPRF.Eval(msk(i), R).

3. It computes ske.ct← m⊕ PRG(s).

4. It sends c = (R ∥ ske.ct) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. It samples {r(d)}d∈{0,1} uniformly at random.

2. It computes {k(d)
2 ← PPRF.Program(msk(d), R∗, r(d))}d∈{0,1}.

3. It sets sk(d) = (k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

4. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to A2.

5. A2 outputs a bit b′ ∈ {0, 1}.
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Analysis: Let pA,i denote the winning probability of A = (A1,A2) in Game Gi. We will
show that the success probability in each game is close to 1/2.

Lemma 16. From the privacy security of PPRF, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl such that |pA,1 − pA,0| ≤ negl(λ).

Proof. The games G1 and G2 are similar, except that the master key is programmed at R∗

instead of 0̄. Therefore, we can use an adversary that distinguishes G1 to G2 to build an
adversary that break the privacy security of PPRF. Observe that in the entire game, msk(d)

for both d ∈ {0, 1} is only used to generate the programmed keys and not evaluate the
PPRF.

Lemma 17. From the correctness of PPRF, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl such that |pA,2 − pA,1| ≤ negl(λ).

Proof. The games G2 and G3 are similar, except in scenario when R∗ is generated in one of
the Query phases. If this event doesn’t occur, then based on the correctness of PPRF, we have
PPRF.Eval(msk(i), R) = PPRF.PEval(k

(i)
2 , R) and the fact that r(b) = PPRF.PEval(k

(b)
2 , R∗)

which is used in the Challenge Phase. The probability of this event occurring is bounded by
q(λ)/2|R| = q(λ)/2S+poly(λ), where q represents the number of queries made by the first adver-
sary. This is because the challenger randomly samples a fresh R for each encryption query.
Since the adversary is a probabilistic polynomial-time (PPT) machine, q is polynomial.

Lemma 18. For all PPT adversaries A = (A1,A2), there exists a negligible function negl
such that |pA,3 − pA,2| = 0.

Proof. In G3, r(b) is chosen uniformly at random whereas s∗ is set to Ext(R∗, k
(b)
1 ) ⊕ r(b).

Whereas, in G4, s∗ is chosen uniformly at random whereas r(b) is set to Ext(R∗, k
(b)
1 ) ⊕ s∗.

It is easy to see that the two distributions are equivalent.

Lemma 19. Assuming that Ext is a strong average min-entropy extractor, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,4 − pA,3| =
negl(λ).

Proof. The difference between G4 and G5 lies in generation of r(b). In G4, it is set to
Ext(R∗, k

(b)
1 )⊕ s∗ whereas in G5, it is truly random. Note that at-most S bits of information

related R is relayed to the second adversary via st. Using this information and the fact that
Ext is a strong average min-entropy extractor, we can deduce that

(k
(b)
1 ,Ext(R∗, k

(b)
1 ), st) ≈S (k

(b)
1 , t, st)

where t is drawn from the uniform distribution. This implies that the r(b) from the two
games are statistically indistinguishable.
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Lemma 20. Assuming that PRG is a secure PRG, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl such that |pA,5 − pA,4| = negl(λ).

Proof. Observe that s∗ is not used anywhere in G5 except while compute ske.ct∗. From the
fact that PRG is secure, we have mb ⊕ PRG(s∗) is computationally indistinguishable from a
truly random string. Therefore, the two games are indistinguishable.

Lemma 21. For all PPT adversaries A = (A1,A2), there exists a negligible function negl
such that pA,5 = 1/2.

Proof. The value b is not used anywhere in the entire G6 game. Therefore, no adversary
can win this game with probability more than 1/2.

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl(·) such that for all λ ∈ N, pA,0 ≤ 1/2 + negl(λ).

4.3 Anonymous Incompressible SKE (Rate-1)

Let IE = (IE.Setup, IE.Enc, IE.Dec) be an (α, β)-HILL entropic encoding scheme, Ext:{0, 1}α(λ,n)

×{0, 1}d(λ) → {0, 1}2λ be a (β(λ, n) − S, negl(λ)) strong average-case min-entropy extrac-
tor where d(λ) = poly(λ), PRG1 : {0, 1}λ → {0, 1}n and PRG2 : {0, 1}λ → {0, 1}α(λ,n) be
pseudorandom generators.

• Setup(1λ, 1S) : The setup algorithm takes an input the security parameter 1λ and
a parameter 1S. It generates ie.crs ← IE.Setup(1λ) and randomly generates k1 ←
{0, 1}d(λ) and k2 ← {0, 1}2λ. It sets sk = (ie.crs, k1, k2).

• Enc(sk,m) : Let sk = (ie.crs, k1, k2). The encryption algorithm takes as input the
secret key sk and a message m. It first randomly generates s1, s2 and computes ie.cd←
IE.Enc(crs,PRG1(s1) ⊕m). It computes c0 ← ie.cd ⊕ PRG2(s2) and c1 ← (s1 ∥ s2) ⊕
Ext(c0, k1)⊕ k2. It returns ct = (c0, c1).

• Dec(sk, ct): Let sk = (ie.crs, k1, k2) and ct = (c0, c1). The decryption algorithm takes as
input the secret key sk and a ciphertext ct. It computes (s1 ∥ s2)← c1⊕Ext(c0, k1)⊕k2
and c′ ← c0 ⊕ PRG2(s2). It generates m← IE.Dec(crs, c′)⊕ PRG1(s1) and returns m.

Correctness: The correctness of the scheme is straightforward. Let ct = (c0, c1) denote an
encryption of m using a secret key sk = (ie.crs, k1, k2). Here, c1 ← (s1 ∥ s2)⊕Ext(c0, k1)⊕k2

so the decryption algorithm gets (s1 ∥ s2) ← c1 ⊕ Ext(c0, k1) ⊕ k2. Also, c0 ← ie.cd ⊕
PRG2(s2) so it gets c′ ← c0⊕PRG2(s2) which is equal to ie.cd. Then it gets m by computing
IE.Dec(crs, c′)⊕ PRG1(s1).
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Rate: The ciphertexts are of size 2λ+ α(λ, n) and key is of size d(λ) + 2λ+ t(λ, n) where
t(λ, n) is the size of the encoding’s crs. Notice that the extractor exists if β(λ, n) − S −
2 log( 1

negl(λ)) + 2 ≥ 2λ. So, the adversary is allowed to have a leakage size of S ≤ β(λ, n)−
2λ−2 log( 1

negl(λ))+2. If we choose a good entropic encoding we get a rate of n
n(1+o(1))+poly(λ)

,
allowed leakage of S = n(1− o(1))− poly(λ) and key size of k = n(1 + o(1)) + poly(λ).

Theorem 22. Let IE = (IE.Setup, IE.Enc, IE.Dec) be a HILL entropic encoding scheme, Ext
be strong average case min entropy extractor, PRG1,PRG2 be secure pseudorandom genera-
tors, then the above scheme is an anonymous incompressible SKE scheme.

Proof. We will show that the above scheme is secure using a series of hybrid arguments.

G0: This is the incompressible anonymous security game where the challenger randomly
chooses b ∈ {0, 1} and encrypts one of mb for using sk(b) given by A1.

• Initialization Phase:
1. The challenger generates ie.crs(d) ← IE.Setup(1λ, 1S)

2. It randomly generates (k
(d)
1 , k

(d)
2 ).

3. It sets sk(d) = (ie.crs(d), k
(d)
1 , k

(d)
2 ) for d ∈ {0, 1}.

• Challenge Phase:
1. The first adversary A1 sends (m0, m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2.

4. It computes ie.cd∗ ← IE.Enc(crs(b),PRG1(s
∗
1)⊕mb).

5. It computes c∗0 ← ie.cd∗ ⊕ PRG2(s
∗
2).

6. It computes c∗1 ← s∗ ⊕ Ext(c∗0, k
(b)
1 )⊕ k

(b)
2 .

7. It sends ct∗ = (c∗0, c
∗
1) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

2. A2 outputs a bit b′ ∈ {0, 1}.

G1: The challenger uses Sim instead of IE.Setup, IE.Enc in the Challenge Phase.

• Initialization Phase:
1. The challenger generates ie.crs(1−b) ← IE.Setup(1λ, 1S).

2. It randomly generates (k
(d)
1 , k

(d)
2 ).
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3. It sets sk(1−b) = (ie.crs(1−b), k
(1−b)
1 , k

(1−b)
2 ).

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2.

4. It computes (ie.cd∗, ie.crs(b))← Sim(PRG1(s
∗
1)⊕mb).

5. It computes c∗0 ← ie.cd∗ ⊕ PRG2(s
∗
2).

6. It computes c∗1 ← s∗ ⊕ Ext(c∗0, k
(b)
1 )⊕ k

(b)
2 .

7. It sends ct∗ = (c∗0, c
∗
1) to A1.

8. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 ).

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. The challenger sends (

{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

2. A2 outputs a bit b′ ∈ {0, 1}.

G2: The challenger sets c∗1 as a truly random string in the Challenge Phase and constructs
sk(b) in the Second Response Phase.

• Initialization Phase:
1. The challenger generates ie.crs(1−b) ← IE.Setup(1λ, 1S).

2. It randomly generates (k
(1−b)
1 , k

(1−b)
2 ) and (k

(b)
1 ) .

3. It sets sk(1−b) = (ie.crs(1−b), k
(1−b)
1 , k

(1−b)
2 ).

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2.

4. It computes (ie.cd∗, ie.crs(b))← Sim(PRG1(s
∗
1)⊕mb).

5. It computes c∗0 ← ie.cd∗ ⊕ PRG2(s
∗
2).

6. It randomly generates c∗1.

7. It sends ct∗ = (c∗0, c
∗
1) to A1.

8. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 , k

(b)
3 ).

• First Response Phase: A1 outputs a state st such that |st| ≤ S.
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• Second Response Phase:

1. The challenger computes k
(b)
2 = c∗1 ⊕ Ext(c∗0, k

(b)
1 )⊕ s∗.

2. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 ).

3. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

4. A2 outputs a bit b′ ∈ {0, 1}.

G3: The challenger sets k
(b)
2 to a truly random string in the Second Response Phase.

• Initialization Phase:
1. The challenger generates ie.crs(1−b) ← IE.Setup(1λ, 1S).

2. It randomly generates (k
(1−b)
1 , k

(1−b)
2 ) and (k

(b)
1 ).

3. It sets sk(1−b) = (ie.crs(1−b), k
(1−b)
1 , k

(1−b)
2 ).

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.

2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2.

4. It computes (ie.cd∗, ie.crs(b))← Sim(PRG1(s
∗
1)⊕mb).

5. It computes c∗0 ← ie.cd∗ ⊕ PRG2(s
∗
2).

6. It randomly generates c∗1.

7. It sends ct∗ = (c∗0, c
∗
1) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The challenger computes a truly random string k
(b)
2 .

2. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 ).

3. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

4. A2 outputs a bit b′ ∈ {0, 1}.

G4: The challenger changes PRG1(s
∗
1)⊕mb to a truly random string.

• Initialization Phase:
1. The challenger generates ie.crs(1−b) ← IE.Setup(1λ, 1S).

2. It randomly generates (k
(1−b)
1 , k

(1−b)
2 ) and (k

(b)
1 ).

3. It sets sk(1−b) = (ie.crs(1−b), k
(1−b)
1 , k

(1−b)
2 ).
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• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.
2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2, t
∗.

4. It computes (ie.cd∗, ie.crs(b))← Sim(t∗).

5. It computes c∗0 ← ie.cd∗ ⊕ PRG2(s
∗
2).

6. It randomly generates c∗1.
7. It sends ct∗ = (c∗0, c

∗
1) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. The challenger computes a truly random string k

(b)
2 .

2. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 ).

3. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

4. A2 outputs a bit b′ ∈ {0, 1}.

G5: The challenger random generates c∗0.

• Initialization Phase:
1. The challenger generates ie.crs(1−b) ← IE.Setup(1λ, 1S).

2. It randomly generates (k
(1−b)
1 , k

(1−b)
2 ) and (k

(b)
1 ).

3. It sets sk(1−b) = (ie.crs(1−b), k
(1−b)
1 , k

(1−b)
2 ).

• Challenge Phase:
1. The first adversary A1 sends (m0,m1, aux, S) where aux is auxiliary information

which will be relayed to the second adversary A2.
2. It randomly chooses b ∈ {0, 1}.
3. It randomly generates s∗1, s

∗
2, t
∗.

4. It computes (ie.cd∗, ie.crs(b))← Sim(t∗).
5. It randomly generates c∗0.
6. It randomly generates c∗1.
7. It sends ct∗ = (c∗0, c

∗
1) to A1.

• First Response Phase: A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:
1. The challenger computes a truly random string k

(b)
2 .

2. It sets sk(b) = (ie.crs(b), k
(b)
1 , k

(b)
2 ).

3. The challenger sends (
{
sk(d)

}
d∈{0,1}

, st, aux) to the second adversary A2.

4. A2 outputs a bit b′ ∈ {0, 1}.
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Analysis: Let pA,i denote the winning probability of A = (A1,A2) in Game Gi. We will
show that the success probability in each game is close to 1/2.

Lemma 23. Assuming that IE is a secure HILL entropic encoding scheme, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,1 − pA,0| ≤
negl(λ).

Proof. Instead of sampling ie.crsb for the entropic encoding using IE.Setup and then encoding
PRG1(s

∗
1) ⊕mb in G1, we simulate both the steps using Sim. If A can distinguish G1 from

G2 then it can distinguish (ie.crsb, ie.cd∗) of G0 from (ie.crsb, ie.cd∗) of G2 which can be used
to create an adversary A′ to break Hill entropic encoding scheme.

Lemma 24. For all PPT adversaries A = (A1,A2), there exists a negligible function negl
such that |pA,2 − pA,1| ≤ negl(λ).

Proof. In G2, k
(b)
2 is chosen uniformly at random and then c∗1 is set to s∗⊕Ext(c∗0, k

(b)
1 )⊕k

(b)
2 .

Whereas, in G3, c∗1 is chosen uniformly at random and k
(b)
2 is set to c∗1⊕Ext(c∗0, k

(b)
1 )⊕ s∗. It

is easy to see that the two distributions are equivalent.

Lemma 25. Assuming that Ext is a strong average min-entropy extractor, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,3 − pA,2| ≤
negl(λ).

Proof. The difference between G3 and G4 lies in the generation of k
(b)
2 . In G3, it is set

to c∗1 ⊕ Ext(c∗0, k
(b)
1 ) ⊕ s∗ whereas in G4, it is truly random. Let C∗0 , C

∗
1 , CRS,K

(b)
1 , K

(b)
2

and ST denote the random variable for the corresponding values in the experiment and
Uλ independent uniform randomness of length λ. By the β−Hill entropy of the entropic
encoding, we know that H∞(C

∗
0 |CRS) ≥ β. Using the fact that for random variables

X, Y, Z, where Y is supported over a set of size T , H∞(X|(Y, Z)) ≥ H∞((X, Y )|Z) −
log(T ) ≥ H∞(X|Z)− log(T ), we deduce that H∞(C∗0 |CRS,K

(b)
2 , ST, C∗1) ≥ β−2λ− log(S).

Therefore, the extractor gives us that (K
(b)
1 , K

(b)
2 , CRS, ST, Uλ) is statistically close to

(K
(b)
1 , K

(b)
2 , CRS, ST,Ext(C∗0 , K

(b)
1 )).

Lemma 26. Assuming that PRG is a secure PRG, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl such that |pA,4 − pA,3| ≤ negl(λ).

Proof. As s∗1 is not used anywhere except for generating h in G4. So using the fact that
PRG is secure, we have ie.cd∗ ⊕ PRG(s∗2) is computationally indistinguishable from a truly
random string. Therefore, the two games are indistinguishable.

Lemma 27. Assuming that PRG is a secure PRG, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl such that |pA,5 − pA,4| ≤ negl(λ).
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Proof. As s∗2 is not used anywhere except for in the Sim in G5. So using the fact that PRG

is secure, we have PRG(s∗1) ⊕mb is computationally indistinguishable from a truly random
string. Therefore, the two games are indistinguishable.

Lemma 28. For all PPT adversaries A = (A1,A2), there exists a negligible function negl
such that pA,5 = 1/2 + negl(λ).

Proof. The value b is not used anywhere in the entire G6 game except for b being revealed
through sk in the Second Response Phase. For d = b, the crs is generated using Sim whereas
for d = 1 − b, it is generated using Setup. Now, using HILL entropic encoding scheme we
can say that crs1−b generated using the Setup(1λ) is indistinguishable if it is generated using
Sim(t(1−b)) where t(1−b) is generated randomly. So, we can remove the information of b which
is being revealed in this way. Therefore, no adversary can win this game with a probability
significantly greater than 1/2.

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl(·) such that for all λ ∈ N, pA,0 ≤ 1/2 + negl(λ).

4.4 Incompressible Anonymous CPA PKE (Rate-1)

Let HPS = (KeyGen′,Encap′,Decap′, ) be a programmable hash proof system with encapsu-
lated keys of size k(λ,SAnonSym, n), and SKE = (SetupAnonSym, EncAnonSym,DecAnonSym) be an
anonymous incompressible secure SKE where Setup generates truly random string as secret,
the message size is n, keys of size k(λ,SAnonSym, n) and ciphertexts of size l(λ,SAnonSym, n)
with the anonymous incompressible SKE adversary being allowed to leak a state of size
SAnonSym.

Construction:

• Setup(1λ, 1S):
– Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1S)

– Return p and tdL

• KeyGen(p):
– Let (pk′, sk′)← KeyGen′(p)

– Return pk = pk′ and sk = sk′

• Enc(pk,m):
– Parse pk = pk′

– Let (x,w)← SampL(p)
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– Let k← Encap′(pk′, x, w)

– Let c← EncAnonSym(k,m)

– Return ct = (x, c)

• Dec(sk, ct):
– Parse sk = sk′

– Parse ct = (x, c)

– Let k← Decap′(sk′, x)

– Return m = DecAnonSym(k, c)

Parameters. The scheme is similar to Branco et al. [BDD22] with except that the under-
lying rate-1 incompressible scheme is anonymous. Therefore, the rate is 1.

Correctness. The correctness of the scheme is straightforward. Let ct = (x, c) denote an
encryption of m using the public key pk = pk′. The secret key sk = sk′. From the correctness
of the Y-programmable hash proof system, we have Encap′(pk′, x, w) = Decap′(sk′, x) so the
decryption algorithm gets k. Now, it gets the message m as DecAnonSym(k, c) which will give
the correct m using the correctness of anonymous incompressible SKE.

Theorem 29 (Security). Let (KeyGen′,Encap′,Decap′, ) is an anonymous programmable
hash proof system and SKE = (SetupAnonSym,EncAnonSym,DecAnonSym) is an anonymous in-
compressible secure SKE, then the above PKE scheme is a secure anonymous incompressible
CPA PKE scheme.

Proof. We prove the security by a hybrid argument. We first list all the hybrids and then
argue their indistinguishability. In each hybrid, we highlight the changes compared to the
previous one.

G0: This is the anonymous incompressible CPA security game where the challenger randomly
chooses b = 0 and encrypts the message m0 given by A1 using pk0.

• First Phase:
1. The challenger runs Setup(1λ, 1S) to get {(pkd, skd)}d∈{0,1}
2. It sends (pk0, pk1) to A1

3. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

4. The challenger runs ct← Enc(pk0,m0) to encrypt m using pk0

5. It sends ct to A1

6. A1 sends a state st such that |st| ≤ S

• Second Phase:
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1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G1: We explicitly represent what happens in KeyGen and Enc.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}

2. It computes (pk′d, sk
′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}

4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, w0)← SampL(p(0))

7. It computes k0 ← Encap′(pk′0, x0, w0)

8. It computes c← EncAnonSym(k0,m0)

9. Let ct = (x0, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G2: The challenger uses the decapsulation mechanism to encrypt the challenge message
instead of encapsulation.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, w0)← SampL(p(0))

7. It computes k0 ← Decap′(sk′0, x0)
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8. It computes c← EncAnonSym(k0,m0)

9. Let ct = (x0, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G3: The challenger samples x0 from Y ⊂ X \ L instead of L

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, tdx0)← SampY (p(0), td
(0)
L )

7. It computes k0 ← Decap′(sk′0, x0)

8. It computes c← EncAnonSym(k0,m0)

9. Let ct = (x0, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G4: The challenger programs the secret key sk0 given to the adversary to decapsulate x0 to
the randomly chosen key k.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1
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5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, tdx0)← SampY (p(0), td
(0)
L )

7. It computes k0 ← {0, 1}k(λ,SAnonSym,n)

8. It computes c← EncAnonSym(k0,m0)

9. Let ct = (x0, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger computes sk′0 ← (tdL, tdx0 , sk0, x0, k0) and set sk0 = sk′0

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G5: The challenger uses a random k to encryption m1 as the challenge.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, tdx0)← SampY (p(0), td
(0)
L )

7. It computes k0 ← {0, 1}k(λ,SAnonSym,n)

8. It computes k← {0, 1}k(λ,SAnonSym,n)

9. It computes c← EncAnonSym(k,m1)

10. Let ct = (x0, c)

11. It sends ct to A1

12. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger computes sk′0 ← (tdL, tdx0 , sk0, x0, k0) and set sk0 = sk′0

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G6: The challenger uses decapsulation mechanism to generate k0.
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• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x0, tdx0)← SampY (p(0), td
(0)
L )

7. It computes k0 ← Decap′(sk0, x0)

8. It computes k← {0, 1}k(λ,SAnonSym,n)

9. It computes c← EncAnonSym(k,m1)

10. Let ct = (x0, c)

11. It sends ct to A1

12. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger computes sk′0 ← (tdL, tdx0 , sk0, x0, k0) and set sk0 = sk′0

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G7: The challenger generates x1 using p(1) instead of x0 using p(0).

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, tdx1)← SampY (p(1), td
(1)
L )

7. It computes k1 ← Decap′(sk1, x1)

8. It computes k← {0, 1}k(λ,SAnonSym,n)

9. It computes c← EncAnonSym(k,m1)

10. Let ct = (x1, c)

11. It sends ct to A1

12. A1 sends a state st such that |st| ≤ S

• Second Phase:
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1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G8: The challenger programs sk1 at x1.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, tdx1)← SampY (p(1), td
(1)
L )

7. It computes k1 ← {0, 1}k(λ,SAnonSym,n)

8. It computes k← {0, 1}k(λ,SAnonSym,n)

9. It computes c← EncAnonSym(k,m1)

10. Let ct = (x1, c)

11. It sends ct to A1

12. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. Let sk′1 ← (tdL, tdx1 , sk

′
1, x1, k1) and set sk1 = sk′1

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G9: The challenger uses k1 to encrypt m1.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, tdx1)← SampY (p(1), td
(1)
L )

7. It computes k1 ← {0, 1}k(λ,SAnonSym,n)

8. It computes k← {0, 1}k(λ,SAnonSym,n)
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9. It computes c← EncAnonSym(k1,m1)

10. Let ct = (x1, c)

11. It sends ct to A1

12. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. Let sk′1 ← (tdL, tdx1 , sk

′
1, x1, k1) and set sk1 = sk′1

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G10: The challenger uses decapsulation mechanism to generate k1.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, tdx1)← SampY (p(1), td
(1)
L )

7. It computes k1 ← Decap′(sk1, x1)

8. It computes c← EncAnonSym(k1,m1)

9. Let ct = (x1, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. Let sk′1 ← (tdL, tdx1 , sk

′
1, x1, k1) and set sk1 = sk′1

2. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

3. A2 outputs a bit b′ ∈ {0, 1}

G11: The challenger generates x1 from the language.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
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4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, w1)← SampL(p(1))

7. It computes k1 ← Decap′(sk1, x1)

8. It computes c← EncAnonSym(k1,m1)

9. Let ct = (x1, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}

G12: The challenger uses the encapsulation mechanism to generate k1.

• First Phase:
1. The challenger runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
2. It computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

3. It sets pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
4. It sends (pk0, pk1) to A1

5. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

6. The challenger computes (x1, w1)← SampL(p(1))

7. It computes k1 ← Encap′(pk1, x1, w1)

8. It computes c← EncAnonSym(k1,m1)

9. Let ct = (x1, c)

10. It sends ct to A1

11. A1 sends a state st such that |st| ≤ S

• Second Phase:
1. The challenger sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

2. A2 outputs a bit b′ ∈ {0, 1}
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Analysis: Let pA,i denote the probability of A = (A1,A2) outputting 0 in Game Gi. We
will show that the probability in each game is close to 1/2.

Lemma 30. For all PPT adversaries A = (A1,A2), |pA,1 − pA,0| = 0.

Proof. The difference between H0 and H1 are purely syntactical. In H1 we just show more
details of what’s going inside of KeyGen and Enc. It is easy to see that the two games are
equivalent.

Lemma 31. From the correctness of programmable HPS, for all PPT adversaries A =

(A1,A2), there exists a negligible function negl such that |pA,2 − pA,1| ≤ negl(λ).

Proof. The game G1 and G2 are similar except for the k0 is computed using Decap′ in G1

whereas it is computed using Encap′ in G0. Using the correctness we can easily see that
Encap′(pk′0, x0, w0) = Decap′(sk′0, x0). So, these two games are indistinguishable.

Lemma 32. From the language indistinguishability of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,3 − pA,2| ≤
negl(λ).

Proof. The game G2 and G3 are similar except for the x0 is sampled from Y ⊂ X \ L in G3

instead of L. Using the language indistinguishability of the programmable HPS, we can see
that the two games are computationally indistinguishable.

Lemma 33. From the Y -programmable smoothness of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,4 − pA,3| ≤
negl(λ).

Proof. The game G3 and G4 are similar except for the sk′0 is programmed in G4 with sampling
k0 randomly. According to the programmable smoothness of hash proof system if x0 /∈ L
and k0 is chosen randomly then

(pk′0, sk
′
0, x0)

s
≈ (pk′0, (tdL, tdx0 , sk

′
0, x0, k0), x0)

Hence, the two games will be statistically close.

Lemma 34. Assuming anonymous incompressible security of PKEAnonSym, for all PPT ad-
versaries A = (A1,A2), there exists a negligible function negl such that |pA,5 − pA,4| ≤
negl(λ).

Proof. The game G4 and G5 are similar except that c is an encryption of m0 using k0 in G4

and in G5, it is an encryption of m1 using k. Let A = (A1,A2) be an adversary that can
distinguish G5 from G4. We will construct an adversary B = (B1,B2) that breaks anonymous
incompressible security of the underlying SKE scheme.
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• First Phase:
1. The challenger generates k0, k randomly.
2. B1 runs Gen(1λ, 1S) to get {(p(d), td(d)L )}d∈{0,1}
3. B1 computes (pk′d, sk

′
d)← KeyGen′(p(d)) for d ∈ {0, 1}

4. B1 set pkd = (p(d), pk′d) and skd = sk′d for d ∈ {0, 1}
5. B1 sends (pk0, pk1) to A1

6. A1 sends (m0,m1, aux) where aux is auxiliary information which will be relayed
to the second adversary A2.

7. B1 computes (x0, tdx0)← SampY (p(0), td
(0)
L )

8. B1 sends (m0,m1, aux
′) where aux′ contains B1 entire state information.

9. The challenger sends c to B1 which is either an encryption of m0 using k0 or m1

using k.
10. Let ct = (x0, c)

11. B1 sends ct to A1

12. A1 sends a state st such that |st| ≤ S to B1 who sends it to the challenger.

• Second Phase:
1. The challenger sends (k0, k, st, aux

′) to B2 where aux′ contains all the necessary
trapdoors.

2. B2 computes sk′0 ← (tdL, tdx0 , sk0, x0, k0) and set sk0 = sk′0.
3. B2 sends ({pki, ski}i∈{0,1}, st, aux) to the second adversary A2

4. A2 outputs a bit b′ ∈ {0, 1}

Observe that if c is an encryption of m0 using k0, then B has simulated G4. Else, it has
simulated G5.

Lemma 35. From the Y -programmable smoothness of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,6 − pA,5| ≤
negl(λ).

Proof. The proof is similar to Lemma 33.

Lemma 36. Assuming anonymity of HPS, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl such that |pA,7 − pA,6| ≤ negl(λ).

Proof. The game G7 and G8 are similar except for x0 is used in G7 which is an element
from the first language and x2 is used in G8 which is an element from the second language.
According to the anonymity property of hash proof system, we have

{p(0), p(1), x∗0} ≈c {p(0), p(1), x∗1}

Hence, the two games will be computationally close.
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Lemma 37. From the Y -programmable smoothness of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,8 − pA,7| ≤
negl(λ).

Proof. The proof is similar to Lemma 33.

Lemma 38. Assuming anonymous incompressible security of PKEAnonSym, for all PPT ad-
versaries A = (A1,A2), there exists a negligible function negl such that |pA,9 − pA,8| ≤
negl(λ).

Proof. The proof is similar to Lemma 34 except B1 sends (m1,m1, aux
′) to its challenger

instead of (m0,m1, aux
′).

Lemma 39. From the Y -programmable smoothness of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,10 − pA,9| ≤
negl(λ).

Proof. The proof is similar to Lemma 33.

Lemma 40. From the language indistinguishability of programmable HPS, for all PPT
adversaries A = (A1,A2), there exists a negligible function negl such that |pA,11 − pA,10| ≤
negl(λ).

Proof. The proof is similar to Lemma 32.

Lemma 41. From the correctness of programmable HPS, for all PPT adversaries A =

(A1,A2), there exists a negligible function negl such that |pA,12 − pA,11| ≤ negl(λ).

Proof. The proof is similar to Lemma 31.

Observe that Game 12 is the original anonymous incompressible PKE game with the chal-
lenge bit b = 1. Using the above lemmas and triangular inequality, for all PPT ad-
versaries A = (A1,A2), there exists a negligible function negl such that for all λ ∈ N,
|pA,0 − pA,12| ≤ negl(λ).
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Chapter 5

Conclusion

In this thesis, we explored advanced cryptographic concepts, focusing on incompressible
encryption and anonymity. We examined security models such as CPA and CCA to frame
our discussions, starting from the fundamentals of SKE and PKE. Our key contributions
include extending incompressible encryption to incorporate anonymity. We demonstrated
that existing incompressible SKE schemes can handle single encryption queries with inherent
anonymity and enhanced these schemes using programmable PRFs to support unbounded
encryption queries. This marks a significant advancement as the first non-trivial incom-
pressible SKE capable of unlimited encryption queries. We modified Branco et al.’s rate-1
incompressible SKE scheme to achieve both anonymity and CPA security. Additionally, we
showed that their hybrid encryption scheme could achieve anonymity using an anonymous
programmable HPS.

Our work opens new research avenues, particularly investigating whether programmable
PRFs are necessary for constructing incompressible SKE schemes capable of handling un-
bounded queries or if one-way functions could suffice. Another exciting direction is develop-
ing rate-1 anonymous incompressible SKE schemes in the random oracle model, balancing
security and efficiency for practical applications.

This thesis significantly advances incompressible encryption, addressing key limitations and
providing robust solutions for future cryptographic systems. We hope these findings in-
spire further research and development, contributing to a more secure and private digital
landscape.
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