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ABSTRACT
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Degree for which submitted: Master of Technology

Department: Computer Science & Engineering

Thesis title: New Results and Proofs in Lattice Theory

Name of Thesis Supervisor: Prof. Manindra Agrawal

Month and year of thesis submission: May, 2022

In this thesis, we give an alternate reduction between Closest Vector Problem (CVP)

and a problem which we call Maximum Distance Sublattice Problem (MDSP). We

show that the problem of solving an instance of CVP in a lattice L is the same as

solving an instance of MDSP in the dual lattice of L. We also show that the set of

Voronoi relevant vectors contains a set of linearly independent vectors whose norms

are equal to the Successive Minima, i.e., λi. This shows that the algorithm given by

Micciancio and Voulgaris [1] to compute the set of all Voronoi relevant vectors can

be extended to an Õ(22n)-time Õ(2n)-space algorithm for solving Successive Minima

Problem (SMP) and Successive Independent Vector Problem (SIVP) without using

the reductions from Closest Vector Problem (CVP) to these problems [2]. We also

show that the length of the longest Voronoi relevant vector is bounded by n3/2

2
λn.
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Chapter 1

Introduction

A lattice generated by a set of linearly independent vectors {b⃗1, . . . , b⃗n} is defined to

be the set of all integer combinations of {b⃗1, . . . , b⃗n}, i.e.,

L(b⃗1, . . . , b⃗n) =

{
n∑

i=1

zibi | for all (z1, . . . , zn) ∈ Zn

}

It is a discretization of a vector space and finds applications in number theoretic

algorithms and cryptography. One of the most interesting applications of lattices is

to build post-quantum cryptosystems. Many powerful cryptographic primitives like

fully homomorphic encryption [3], functional encryption [4], etc. can be based on

the hardness of certain lattice problems.

Shortest Vector problem (SVP) and Closest Vector problem (CVP) are two well

known and widely studied lattice problems. Given a basis B of the lattice L, Shortest

Vector problem is to find the shortest non-zero vector in the lattice. In the Closest

Vector problem we are given a basis of a lattice, a target vector t⃗ and asked to find

the closest lattice vector to the target t⃗. CVP and SVP are shown to be NP-hard

even to approximate within an approximation factor under nO(1/ log logn) [9, 8, 5, 11,

10, 7, 6, 1] (for SVP only randomized reduction is known). Recently, there are also

results on the fine grained hardness of CVP [12, 13] and SVP [14]. Among these two

problem, CVP is harder than SVP as there is an approximation factor preserving

reduction from SVP to CVP[15]. Very recently, Divesh et al.[16] showed dimension
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preserving reduction between SVP and CVP in different p-norms.

All the known algorithms for solving the exact SVP and CVP take exponential

time. Kannan [17] gave an enumeration based algorithm for CVP which takes nO(n)

time and polynomial space. There are also some improvements on runing time of

Kannan’s algorithm [18, 19]. In 2001, Ajtai, Kumar and Sivakumar gave the first

2O(n) time and space sieving algorithm for SVP [20] and CVP [21]. There is a lot of

work in the sieving algorithm for SVP and CVP [26, 22, 23, 25, 27, 24]. The fastest

known algorithm to solve SVP and CVP is due to Micciancio and Voulgaris [1] which

uses the concept of Voronoi relevant vectors. Fastest know algorithm for SVP and

CVP takes 2n+o(n) time and space, which is based on Discrete Gaussian Sampling

[29, 28].

Algorithm Time complexity Space Complexity

Enumeration nO(n) poly(n)
Sieving 2O(n) 2O(n)

Voronoi Õ(22n) Õ(2n)

Gaussian 2n+o(n) 2n+o(n)

Table 1.1: Algorithms for CVP

In 1982, Lenstra et al. [30] gave a polynomial time algorithm known as LLL

for finding an exponential approximation of the shortest vector in the lattices. The

applications of LLL are found in factoring polynomials over rationals, finding linear

Diophantine approximations, cryptanalysis of RSA and other cryptosystems [31,

33, 32]. Babai [34] gave a polynomial time algorithm for approximating CVP with

exponential approximation factor which uses LLL. Schnorr has given improvements

over the LLL algorithm [36, 35].

1.1 Our Contributions

The first part of this thesis focuses on CVP and Maximum Distance Sublattice

Problem (MDSP). We give an alternate reduction between CVP and a problem



3

which we call MDSP. It can be shown that the problem of solving an instance of

CVP in a lattice L is the same as solving an instance of MDSP in the dual lattice of

L.

The second part of the thesis deals with the Voronoi relevant vectors and the

Successive Minima. We show that the set of Voronoi relevant vectors contains a set

of linearly independent vectors whose norms are equal to the Successive Minima,

i.e., λi. This shows that the algorithm given by Micciancio and Voulgaris [1] to

compute the set of all Voronoi relevant vectors can be extended to an Õ(22n)-time

Õ(2n)-space algorithm for solving Successive Minima Problem (SMP) and Successive

Independent Vector Problem (SIVP) without using the reductions from CVP to these

problems [2]. We also show that the length of the longest Voronoi relevant vector is

bounded by n3/2

2
λn.





Chapter 2

Preliminaries and notations

2.1 Notations

In this thesis, Z, R and Q will denote the sets of integers, reals and rationals respec-

tively. For any positive integer n > 0, [n] denotes the set {1, 2, 3, . . . , n}. Vectors

will be denoted by small case and matrices and basis sets will be denoted in cap-

ital letters. Let B = {b⃗1, . . . , b⃗k} be a set of vectors in Rn. The subspace of Rn

spanned by B will be denoted by span(B). The norm of a vector v⃗ = [v1, . . . , vn]

is the normal Euclidean norm, i.e, ||v⃗|| =
√∑

i v
2
i . The norm of B is defined as

||B|| = max
i∈[n]

||⃗bi||. For any two sets of vectors U and V , U + V will denote the set

{u⃗+ v⃗ | u⃗ ∈ U, v⃗ ∈ V }.

2.2 Lattice

Definition 2.1 (Lattice) Given a set of linearly independent vectors B = {b⃗1, . . . , b⃗m},

the lattice spanned by B is the set L(B) = {B · z⃗ | ∀z⃗ ∈ Zm}.

In other words, a lattice is an integral-span of B where B is called a basis of the

lattice. The rank of the lattice is the number of independent vectors in the basis B

and the dimension of a lattice is the dimension of the ambient space containing the

lattice. We also represent B by a matrix in which the columns are vectors of B. In

the matrix representation, rank of the lattice is the same as the rank of matrix B.
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Similar to a vector space, a lattice contains infinitely many bases. If B and B′ are

two bases of the same lattice, then B′ = B · U where U is a unimodular matrix.

Theorem 2.2 Let B (in matrix form) be a basis of a rank-n lattice L in Rn. Then

B′ is also a basis of L if and only if there exists an n×n unimodular matrix U such

that B′ = B · U .

Let v⃗ be an arbitrary vector. Then L(B)+v⃗ denotes the shifted lattice {
∑n

i=1 zi .⃗bi+

v⃗ | ∀zi ∈ Z}. Observe that if v⃗ belongs to L(B), then L(B) + v⃗ = L(B).

A lattice L′ is said to a sublattice of L if L′ ⊆ L. Observe that the lattice denoted

by 2L(⃗b1, . . . , b⃗n) which is {
∑n

i=1 2zi⃗bi | zi ∈ Z} is a sublattice of L(⃗b1, . . . , b⃗n).

Further, the shifted lattice 2L(⃗b1, . . . , b⃗n) + v⃗ is a subset of L(⃗b1, . . . , b⃗n) for any

v⃗ ∈ L(⃗b1, . . . , b⃗n). For each v⃗ ∈ L(⃗b1, . . . , b⃗n), 2L(⃗b1, . . . , b⃗n) + v⃗ is called a coset

of 2L(⃗b1, . . . , b⃗n). Each vector of L(⃗b1, . . . , b⃗n) belongs to either 2L(⃗b1, . . . , b⃗n) or to

one of its cosets. Hence they partition the entire lattice.

Claim 2.3 Let an n× n matrix B be a basis matrix of a lattice. Then there are 2n

distinct cosets of 2L(B), given by 2L(B) + B · z⃗ for all z⃗ ∈ {0, 1}n.

Definition 2.4 (Dual Lattice) Let L = L(B) be a lattice in Rn. Then, the dual

lattice of L, denoted by L∗ is

L∗ = {v⃗ | ∀u⃗ ∈ L, v⃗.u⃗ ∈ Z}

It can be easily shown that if B is the basis of L, then D = (B−1)T is a basis for the

dual lattice L∗. D is called the dual basis of B. Observe that from the definition of

dual basis, we have DTB = I.

Claim 2.5 If D is the dual basis of B, then for a basis B′ = BU where U is a

unimodular matrix, its dual basis is D′ = D(U−1)T .

Definition 2.6 (Shortest Vector Problem (SVP)) Given a basis B, find a short-

est non-zero vector v⃗ in the lattice L(B), i.e., ||v⃗|| ≤ ||u⃗|| for all u⃗ ∈ L(B) \ {⃗0}.
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Definition 2.7 (Closest Vector Problem (CVP)) Given a basis B and a vector

t⃗, find the vector v⃗ in the lattice L(B) which is closest from t⃗, i.e., ||v⃗− t⃗|| ≤ ||u⃗− t⃗||

for all u⃗ ∈ L(B).

Definition 2.8 (Shortest Basis Problem (SBP)) Given a basis of a lattice L,

find a basis C of L such that ||C|| ≤ ||D|| for all bases D of L.

Definition 2.9 (Successive Minima) The ith successive minimum λi(L) for a

lattice L of rank n is the radius of the smallest sphere centered at the origin containing

at least i independent lattice vectors.

λi(L) = inf {r | dim(span(L ∩ B(0, r))) ≥ i}

where B(0, r) denotes the set of vectors with norm at most r.

A direct consequence of this definition is as follows.

Lemma 2.10 Let S = {v⃗1, . . . , v⃗k} be a linearly independent set of vectors of a

lattice L. Then there exists a v⃗ ∈ S such that ||v⃗|| ≥ λk.

A non-trivial relation between the norm of a shortest basis of a lattice and the

λn of the lattice is given in lemma 2.11.

Lemma 2.11 (Corollary 7.2, [37]) For any lattice L, there exists a basis B such

that ||B|| ≤
√
nλn/2.

Definition 2.12 (Successive Minima Problem (SMP)) Given a basis B of a

lattice, find linearly independent vectors s⃗1, s⃗2, . . . , s⃗n such that ||s⃗i|| = λi(L(B)) for

all i.

Definition 2.13 (Shortest Independent Vector Problem (SIVP)) Given a ba-

sis B of a lattice, find n linearly independent vectors s⃗1, . . . , s⃗n such that ||s⃗i|| ≤

||s⃗i+1|| for all i and ||s⃗n|| = λn(L(B)).

Observe that a solution to SMP is also a solution to SIVP.
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Theorem 2.14 (Corollary 4, [2]) There is a dimension and rank preserving re-

duction from SMP and SIVP to CVP. The reduction calls the CVP oracle poly(n, b)

times where b is the number of input bits.

Definition 2.15 (Shortest Vector Problem in Shifted Lattice (SVPS)) Given

a lattice basis B = {⃗b1, . . . , b⃗n} in the Rn space and t⃗ ∈ Rn, find a shortest vector v⃗

in the shifted lattice t⃗+ L(B), i.e

v⃗ = arg min
u⃗∈t⃗+L(B)

||u⃗||

Observe that SVPS and CVP are equivalent problems because CVP(B, t⃗) = t⃗ −

SVPS(B, t⃗).

Definition 2.16 Given a basis B = {b⃗1, . . . , b⃗k} of a subspace in Rn, this subspace

also has an orthogonal basis B∗ = {b⃗∗1, . . . , b⃗∗k} given by b⃗i
∗
= b⃗i −

∑i−1
j=1 µij b⃗j

∗
where

µij = b⃗i
T
· b⃗j

∗
/(b⃗j

∗
)2. This transformation of the basis is called Gram Schmidt

orthogonalization.

Definition 2.17 Let B = {b⃗1, . . . , b⃗k} be a basis of a k-dimensional subspace of Rn

and v⃗ be a vector in Rn. The projection of v⃗ on the subspace S = span(B) is its

component in S. If B∗ is an orthogonal basis of span(B) (such as the one computed

by Gram Schmidt orthogonalization), then the projection of v⃗ on S is

projS(v⃗) =
k∑

i=1

(v⃗T · b⃗∗i /b⃗∗i
2
).b⃗∗i .

The subspace orthogonal to S is given by S⊥ = {x⃗ ∈ Rn | vt · y = 0 ∀y ∈ S}. The

component of v⃗ perpendicular to S is v⃗− projS(v⃗). It is equal to the projection of v⃗

on S⊥, i.e., projS⊥(v⃗) = v⃗−projS(v⃗). The distance of the point v⃗ from the subspace

S is the length of this vector. So

dist(v⃗, S) = ||v⃗ − projS(v⃗)|| = ||projS⊥(v⃗)||
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Definition 2.18 (Maximum Distance Sublattice Problem(MDSP)) Given a

basis {v⃗, b⃗1, . . . , b⃗n} for an n+1 dimensional lattice L, find B′ = {b⃗′1, . . . , b⃗′n} such that

{v⃗, b⃗′1, . . . , b⃗′n} is also a basis for L and the distance dist(v⃗, span(B′
)) is maximum.

v⃗ is called the fixed vector.

The following theorem shows a trivial reduction between SVPS and MDSP.

Theorem 2.19 There exist polynomial time reductions between SVPS and MDSP.

Proof. We now show the trivial reduction between MDSP and SVPS. Let the input

to MDSP be B = [v⃗, b⃗1, . . . , b⃗n] with v⃗ being the fixed vector and let its dual basis be

D = [u⃗, d⃗1, . . . , d⃗n]. In Theorem 3.1, we will show that a solution B′ = [v⃗, b⃗′1, . . . , b⃗
′
n]

to MDSP can be written as B′ = BU = [v⃗, b⃗1 + α1v⃗, . . . , b⃗n + αnv⃗], i.e

U =



1 α⃗T

0

...

0

I


where α⃗T = [α1, . . . , αn]. From claim 2.5, we know that the dual basis D′ of B′ is

D(U−1)T where

(U−1)T =

 1 0 . . . 0

−α⃗ I


Therefore, D′ = [u⃗−

∑
αid⃗i, d⃗1, . . . , d⃗n]. Also, from the definition of dual basis, we

have (D′)TB′ = I, therefore,

v⃗.
(
u⃗−

∑
αid⃗i

)
= 1 (2.1)

||v⃗|| cos(θ) = 1

||u⃗−
∑

αid⃗i||
(2.2)

where θ is the angle between v⃗ and u⃗ −
∑

αid⃗i. Again, from the definition of dual

basis, we know that u⃗ −
∑

αid⃗i is perpendicular to all b⃗′i, therefore u⃗ −
∑

αid⃗i

is perpendicular to span(⃗b′1, . . . , b⃗′n). Therefore, 90 − θ is the angle between v⃗ and
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Figure 2.1: Voronoi cells

span(⃗b′1, . . . , b⃗′n). Hence, ||v⃗|| sin(90−θ) is the perpendicular distance between v⃗ and

span(⃗b′1, . . . , b⃗′n) which is maximized. Since, B′ is the solution of MDSP, the term

||v⃗|| sin(90 − θ) is maximized. Therefore, ||u⃗ −
∑

αid⃗i|| is minimized due to (2.2)

which is SVPS in the dual lattice.

Definition 2.20 (Voronoi Cell) Let L be a lattice. The Voronoi cell of the lattice

is

V(L) = {x⃗ ∈ Rn | ∀v⃗ ∈ L \ {0}, ||x⃗|| < ||x⃗− v⃗||}.

The halfspace for a non-zero lattice vector v⃗ is defined as

H(v⃗) = {x⃗ ∈ Rn | ||x⃗|| < ||x⃗− v⃗||}.

Observe that V(L) =
⋂

H(v⃗
v⃗∈L\{0⃗}

). In fact, there is a minimal set of lattice vectors called

the set of Voronoi relevant vectors, denoted by V (L), such that V(L) =
⋂
H(v⃗

v⃗∈V (L)
).

Theorem 2.21 (Voronoi, [38]) Let L be a lattice and v⃗ ∈ L be any lattice vector.

Then v⃗ is a Voronoi relevant vector if and only if ±v⃗ are the only shortest vectors

in the coset 2L+ v⃗.

Corollary 2.22 The number of Voronoi relevant vectors is upper bounded by

2(2n − 1).

Proof. According to Theorem 2.21 if coset has a unique (along with its negative)

minimum vector, then that vector and its negative are Voronoi relevant vectors.

Therefore the total number of Voronoi relevant vectors depends on the number of
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cosets of 2L, not including 2L itself, because 0⃗ is not a Voronoi relevant vector. So

the number of Voronoi relevant vectors is at most 2(2n − 1) (See Claim 2.3).





Chapter 3

New Reduction between MDSP and

CVP

In this section, we present a new reduction between MDSP and CVP. Let {v⃗, b⃗1, . . . , b⃗n}

be an input to the MDSP. Let us denote it by [v⃗ | B] where B denotes {b⃗1, . . . , b⃗n}.

The following theorem shows that a solution B′ to the MDSP can be achieved from

B by adding integral multiples of v⃗ to vectors in B.

Theorem 3.1 Let [v⃗ | B] be a basis of an n + 1 dimensional lattice L in Zn+1.

Then for any lattice basis of the form [v⃗ | B′′], there exists a basis [v⃗ | B′] such that

⟨B′′⟩ = ⟨B′⟩ and

B′ = B + [α1v⃗, α2v⃗, . . . , αnv⃗]

where αi ∈ Z.

Proof. Since [v⃗ | B′′] and [v⃗ | B] generate the same lattice, there exists a unimodular

matrix U ′, see Theorem 2.2, such that

[v⃗ | B′′] = [v⃗ | B] · U ′

where U is given below. The determinant det(U ′) = 1× det(U) = ±1, so det(U) =

±1. Observe that U ′ ∈ Zn+1×n+1 which implies U ∈ Zn×n and it is unimodular.
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Therefore, U−1 exists and it is also unimodular.

U ′ =



1 β1 β2 . . . βn−1 βn

0

...

0

U



Let us denote vector (β1, β2, . . . , βn) by β⃗T . Then

[v | B′′]



1 0 0 . . . 0 0

0

...

0

U−1


= [v | B] ·



1 β⃗T

0

...

0

U


·



1 0 0 . . . 0 0

0

...

0

U−1



= [v⃗ | B] ·



1 β⃗T · U−1

0

...

0

UU−1



= [v⃗ | B] ·



1 β⃗T · U−1

0

...

0

I


= [v⃗ | B] + [⃗0 | α1v⃗, . . . , αnv⃗]

where β⃗T · U−1 = (α1, . . . , αn)
T . The left hand side in the above equation is equal

to [v⃗ | B′′U−1]. So B′′ · U−1 = B + [α1v⃗, . . . , αnv⃗].

The matrix U−1 is unimodular so B′′ and B′ = B′′ ·U−1 span the same sublattice

and B′ = B + [αv⃗, . . . , αnv⃗].

Keeping Theorem 3.1 in consideration, the maximum distance sublattice prob-

lem can be stated as follows. Given an (n + 1)-dimensional lattice with basis
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{v⃗, b⃗1, . . . , b⃗n}. Compute a basis {v⃗, b⃗1 + j1v⃗, . . . , b⃗n + jnv⃗} such that the distance of

point v⃗ from the subspace spanned by {b⃗1 + j1v⃗, . . . , b⃗n + jnv⃗} is maximum, where

ji ∈ Z ∀i.

Let Px1,...,xn denote the subspace spanned by the vectors b⃗1 + x1v⃗, . . . , b⃗n + xnv⃗

for (x1, . . . , xn) ∈ Rn. The following result determines the distance of the point v⃗

from Px1,...,xn for the special case when {v⃗, b⃗1, . . . , b⃗n} is an orthonormal basis.

Lemma 3.2 Let {v⃗, b⃗1, . . . , b⃗n} be an orthonormal basis of Rn+1. Then the distance

of point v⃗ from Px1,...,xn is 1/
√

1 +
∑

i x
2
i for any (x1, . . . , xn) ∈ Rn.

Proof. Let
∑

i ci(b⃗i + xiv⃗) be the projection of vector v⃗ on Px1,...,xn . Then w⃗ =∑
i ci(b⃗i+xiv⃗)−v⃗ is the perpendicular drop from point v⃗ to the plane. Then w⃗T .(b⃗i+

xiv⃗) = 0 , ∀i ∈ [n]. These equations simplify to ci = −xi.t where t =
∑

j cjxj − 1.

The square of the distance of v⃗ from the plane is w⃗2 =
∑

i c
2
i + (

∑
i cixi − 1)2 =∑

i c
2
i + t2 = t2(1 +

∑
i x

2
i ).

We have t =
∑

i xici − 1 = −t
∑

i x
2
i − 1. So t = −1/(1 +

∑
i x

2
i ). Plugging it in

the expression for w⃗2 we get w⃗2 = 1/(1 +
∑

i x
2
i ).

The distance from a plane is the projection on its orthogonal plane and projec-

tion is directly proportional to the length of the vector. Hence we have a trivial

consequence.

Corollary 3.3 Let {v⃗, b⃗1, . . . , b⃗n} be an orthogonal basis of Rn+1 in which all but v⃗

are unit vectors. Then the distance of point v⃗ from Px1,...,xn is |v⃗|/
√

1 +
∑

i x
2
i for

any (x1, . . . , xn) ∈ Rn.

Consider an arbitrary basis {v⃗, b⃗1, . . . , b⃗n} of Rn+1. Let b⃗′i = b⃗i − γiv⃗ be perpen-

dicular to v⃗ for each i, where γi ∈ R ∀i. So γi = b⃗i
T
· v⃗/v⃗2 and the plane spanned

by {b⃗′1, . . . , b⃗′n} is perpendicular to v⃗. Note that γi need not be an integer. A lattice

point b⃗i + ji · v⃗ is the same as b⃗′i + (γi + ji)v⃗ in the new reference frame.

Consider the plane Px1,...,xn which is spanned by b⃗1 + x1v⃗, . . . , b⃗n + xnv⃗. In the

new basis, it is spanned by b⃗′1 + (γ1 + x1)v⃗, . . . , b⃗′n + (γn + xn)v⃗.
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Let us now transform the basis, {b⃗′1, . . . , b⃗′n}, of the n-dimensional subspace

into an orthonormal basis. Let B′ denote the matrix in which column vectors

are b⃗′1, b⃗
′
2, . . . , b⃗

′
n. Let L be a linear transformation such that the column vectors

of B′′ = B′ · L form an orthonormal basis. Denote the column vectors of B′′ by

b⃗′′1, . . . , b⃗
′′
n which are unit vectors and mutually orthogonal. So b⃗′′i =

∑
k Lki · b⃗′k. The

new basis {b⃗′′1, . . . , b⃗′′n} spans the same subspaceas b⃗′1, . . . , b⃗
′
n. Now {v⃗/|v⃗|, b⃗′′1, . . . , b⃗′′n}

forms an orthonormal basis for the entire Rn+1.

The plane Px1,...,xn is spanned by b⃗′1+(γ1+x1)v⃗, . . . , b⃗′n+(γn+xn)v⃗. If we extend

a line parallel to v⃗ from the point b⃗′′i , then it must intersect this plane at one point,

say, b⃗′′i + yiv⃗. Then the plane spanned by {b⃗′′1 + y1v⃗, . . . , b⃗′′n + ynv⃗} is Px1,...,xn itself.

We have b⃗′′i + yiv⃗ =
∑

k Lki(b⃗′k + (γk + xk)v⃗) −
∑

k Lki(γk + xk)v⃗ + yiv⃗. By the

choice of yi, b⃗′′i + yiv⃗ belongs to Px1,...,xn . Vector b⃗′k + (γk + xk)v⃗ also belongs to the

plane for each k. But v does not belong to the plane. From the linear independence

−
∑

k Lki(γk + xk)v⃗ + yiv⃗ = 0. So yi =
∑

k Lki(γk + xk), i.e., y⃗ = LT · γ⃗ + LT · x⃗.

Plane P (x1, . . . , xn) is spanned by b⃗′′1 + y1v⃗, . . . , b⃗′′n + ynv⃗ where {b⃗′′1, . . . , b⃗′′n} is an

orthonormal basis and v⃗ is perpendicular to each vector of the set. From Corollary

3.3, the square of the distance of v⃗ from the plane Px1,...,xn is |v⃗|2/(1 +
∑

i y
2
i ). Our

goal is to find a sub-lattice plane Pj1,...,jn , where j⃗ ∈ Zn, such that the distance from

v⃗ is maximum. Equivalently we want to find a sublattice plane such that
∑

i y
2
i

(= y⃗2) is minimum, i.e., our goal is to minimize the length of the vector y⃗.

If x⃗ = j⃗ ∈ Zn, then corresponding y⃗ = LT · γ⃗ + LT · j⃗. Define a lattice L1

generated by the basis LT , i.e., the row vectors of L are basis vectors. Denote the

rows of L by {r⃗1, . . . , r⃗n}. Let z⃗ = −LT · γ⃗ = −
∑

i γir⃗i. Then the length of the

vector y⃗ is equal to the distance between the fixed point z⃗ and the lattice point∑
i jir⃗i of L1. Thus the problem reduces to finding the lattice point of L1 closest to

the point z⃗. This is an instance of CVP where {r⃗1, . . . , r⃗n} is the lattice basis and z⃗

is the fixed point.

Lemma 3.4 Given a lattice basis {v⃗, b⃗1, . . . , b⃗n} as an instance of MDSP. Let

b⃗′i = b⃗i−γiv⃗ for all 1 ≤ i ≤ n where γi = b⃗i
T
· v⃗/v⃗2. Let L be a linear transformation
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such that B′′ = B′ · L is an orthonormal basis of Rn+1. Equivalently {b⃗′′1, . . . , b⃗′′n} is

an orthonormal basis where b⃗′′i =
∑

k(L
T )ikb⃗′k. Let r⃗i denote the i-th row of L. Then

the sub-lattice plane Pj1,...,jn has maximum distance from the point v⃗ if
∑

i jir⃗i is the

optimal lattice vertex for the CVP instance in which the lattice basis is {r⃗1, . . . , r⃗n}

and the fixed point is −LT · γ⃗.

The entire transformation involves only invertible steps hence the converse of

the above claim also holds.

Lemma 3.5 Let the basis {s⃗1, . . . , s⃗n} and the fixed point t⃗ ∈ Rn be an instance

of CVP. L denotes the matrix in which i-th row is s⃗i for all 1 ≤ i ≤ n. Define

γ = −(LT )−1 · t⃗. Pick an arbitrary orthonormal basis {e⃗0, e⃗′′1, . . . , e⃗′′n} for Rn+1. Let

B′′ be the matrix with column vectors e⃗′′1, . . . , e⃗
′′
n and B′ = B′′ ·L−1. The i-th column

of B′ is denoted by e⃗′i. Let e⃗i = e⃗′i + γie⃗0. If {e⃗1 + j1e⃗0, . . . , e⃗n + jne⃗0} is a solution

of MDSP instance {e⃗0, e⃗1, . . . , e⃗n}, then
∑

i jis⃗i is the solution of the given CVP

instance.

Thus we have the following theorem.

Theorem 3.6 There is a polynomial time reduction between MDSP and CVP.





Chapter 4

Successive Minima from Voronoi

Relevant Vectors

In this section, we will show that all solutions to SMP is contained in the set of

Voronoi relevant vectors. We also show that λn(L) can be used to bound ||V (L)||.

We present a few interesting observations on V (L) and show that the set of Voronoi

relevent vectors generate the entire lattice. We start by proving some claims regard-

ing the vectors in a solution to the SMP problem.

4.1 Relation between Solutions to SMP and Voronoi

Relevant Vectors

Claim 4.1 Let S = {s⃗1, . . . , s⃗n} be a solution to SMP of a lattice L, i.e., S is a set

of n linearly independent lattice vectors such that ||s⃗i|| = λi(L). If w⃗ ∈ L, ||w⃗|| < λj

and λj−1 < λj, then w⃗ ∈ span(s⃗1, . . . , s⃗j−1).

Proof. Since, λj−1 < λj, there are exactly j − 1 linearly independent vectors whose

norms are strictly less than λj. If w⃗ ̸∈ span(s⃗1, . . . , s⃗j−1), then s⃗1, . . . , s⃗j−1, w⃗ are

linearly independent. Since λj−1 < λj, the norms of each of these j vectors is strictly

less than λj. This contradicts Lemma 2.10.

An obvious corollary of Claim 4.1 is as follows.
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Corollary 4.2 Let S = {s⃗1, . . . , s⃗n} and S ′ = {s⃗′1, . . . , s⃗′n} be any two solutions of

SMP. If λi < λi+1, then span(s⃗1, . . . , s⃗i) = span(s⃗′1, . . . , s⃗′i).

We will show in the main result of this chapter that if S = {s⃗1, s⃗2, . . . , s⃗n} is a

solution to SMP, then S will be contained in the set of Voronoi relevant vectors of

the lattice. From theorem 2.21, if v⃗ ∈ L is not a Voronoi relevant vector, then there

exist w⃗ ∈ L \ {0, v⃗} such that ||v⃗/2 − w⃗|| ≤ ||v⃗/2||. We will use this criterion to

prove this result.

( Remarks: We first show that all the shortest vectors of L are Voronoi relevant.)

If s⃗1 is not Voronoi relevant, then applying above criterion for v⃗ = s⃗1, we consider

two cases.

•
∣∣∣∣∣∣∣∣ s⃗12 − w⃗

∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣ s⃗12
∣∣∣∣∣∣∣∣ : In this case ||s⃗1 − 2w⃗|| < ||s⃗1|| which is a contradiction

because s⃗1 is the shortest vector in L.

•
∣∣∣∣∣∣∣∣ s⃗12 − w⃗

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ s⃗12
∣∣∣∣∣∣∣∣ : It implies that cos(θ) = ||w⃗||/||s⃗1|| where θ is the angle

between s⃗1 and w⃗. Since ||w⃗|| ≥ ||s⃗1||, we have cos(θ) ≥ 1. Therefore θ = 0

and w⃗ = s⃗1, which contradicts the way w⃗ was chosen.

This implies that s⃗1 ∈ V (L). Now to argue using induction assume that s⃗1, . . . , s⃗i−1

belong to V (L) and s⃗i /∈ V (L), for some i. Again we consider two cases based on

the criterion.

• ||s⃗i−2w⃗|| < ||s⃗i|| : From the Claim 4.1 s⃗i−2w⃗ belongs to X = span(s⃗1, . . . , s⃗i−1).

Due to triangular inequality, we have ||w⃗|| = ||w⃗ − s⃗i/2 + s⃗i/2|| < ||s⃗i||. So

w⃗ ∈ X. Combining the two facts we get that s⃗i also belongs to X. But that

is impossible because ||s⃗i|| = λi.

• ||s⃗i − 2w⃗|| = ||s⃗i|| : This implies that ||w⃗||2 = s⃗i.w⃗ =⇒ cos(θ) = ||w⃗||/||s⃗i||.

If θ = 0 then w⃗ = s⃗i which contradicts the fact that w⃗ /∈ {0, v⃗ = s⃗i}. So, we

consider the case when ||s⃗i|| > ||w⃗||. In this case w belongs to
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X = span(s⃗1, . . . , s⃗i−1). We get an inequality as follows.

||s⃗i − w⃗||2 = ||s⃗i||2 + ||w⃗||2 − 2s⃗i.w⃗

= ||s⃗i||2 + ||w⃗||2 − 2||w⃗||2

= ||s⃗i||2 − ||w⃗||2

< ||s⃗i||2

This implies that s⃗i − w⃗ also belongs to X. Thus we deduce that s⃗i must also

belong to X, which is absurd because ||s⃗i|| = λi.

Therefore, we have the following theorem.

Theorem 4.3 If S = {s⃗i, . . . , s⃗n} is a solution to SMP for a lattice L, then S ⊆

V (L).

Corollary 4.4 For any lattice L

λn(L) ≤ ||V (L)|| ≤ n3/2

2
λn(L)

.

Proof. The lower bound is obvious due to Theorem 4.3. Let B be a shortest basis

of L. Using Lemma 2.11, we know that ||B|| ≤
√
nλn(L)/2. Also, the norm of the

shortest vector in the coset 2L + v⃗, where v⃗ ∈ L, is at most ||v⃗||. We know that

all possible cosets are given by 2L + Bz⃗ where z⃗ ∈ {0, 1}n. Therefore, the norm

of the shortest vector in 2L + Bz⃗, for any z⃗, is at most n.||B||. Thus ||V (L)|| ≤

n3/2λn(L)/2.

The algorithm given by Micciancio et al. [1] computes all the Voronoi relevant

vectors, then Algorithm 1 computes a solution of SMP.

Let us now prove the correctness of the algorithm.

Theorem 4.5 Algorithm 1 computes a solution of SMP.
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Input: A basis B = [⃗b1, . . . , b⃗n] for L.
Run the algorithm given by Micciancio et al. to compute the set of all
Voronoi relevant vector V ;

Sort V in the order of non-decreasing norm;
S := {};
i = 1;
while |S| < n do

if V [i] ̸∈ span(S) then
S = S ∪ {V [i]};

end
end
Return S.

Algorithm 1: Algorithm for solving SMP

Proof. From Theorem 4.3 we know that the list of Voronoi relevant vectors contain

all the solutions of SMP. It is obvious that the algorithm will compute n linearly

independent lattice vectors. Let the sorted sequence of the vectors of V (L) be

{v⃗1, v⃗2, . . . }. Let {v⃗j1 , . . . , v⃗jn} be any arbitrary solution of SMP in the increasing

order of norm. Suppose the algorithm computes the set S = {v⃗i1 , . . . , v⃗in} where

i1 < i2 < . . . in. Next we will show that ip ≤ jp.

Assume that ip > jp. So we have iq ≤ jp < iq+1 for some q < p. From

the algorithm we know that each of the vectors v⃗j1 , v⃗j2 , . . . , v⃗jp can be spanned by

{v⃗i1 , . . . , v⃗iq}. So span(v⃗j1 , . . . , v⃗jp) ⊆ span(v⃗i1 , . . . , v⃗iq). Thus p ≤ q, which is a

contradiction!

From Lemma 2.10 ||v⃗ip || ≥ λp for all p. Also from the above result ||v⃗ip || ≤

||v⃗jp || = λp for all p. Hence ||v⃗ip || = λp for all p.

As the number of Voronoi relevant vectors is at most 2(2n−1), see Corollary 2.22,

the sorting would take time Õ(2n). The number of iterations in the while loop is

O(2n) and in each iteration, the amount of time required to check whether a vector

is to be included in the set S is polynomial. Therefore, the entire running time

of the algorithm is Õ(22n) because this is also the time complexity of Micciancio’s

algorithm to compute V (L).

It is easy to see that Algorithm 1 computes a solution of SMP because set V is

the set of all Voronoi relevant vectors and it contains every solution to SMP.
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Corollary 4.6 Let V be any set of lattice vectors that contains all vectors with

norm λi for all i. Then Algorithm 1 computes a solution of SMP on input V .

4.2 More Observations on V (L)

In this section we give some facts which bring more light into the relationship be-

tween Voronoi relevant vectors and the vectors belonging to some SMP solution. We

begin with two examples.

Following lattice has a vector with norm λ3 but it does not belong to any SMP

solution. It also does not belong to V (L). The basis of the lattice is

B =


1 0 0

0 1 0

0 0
√
2


Observe that [1, 1, 0]T is a lattice vector with norm equal to λ3 =

√
2 but does not

form a part of any solution to SMP.

Next example shows a vector that belongs to V (L) while its norm is not equal

to λi for any i. Consider the lattice L spanned by the basis.

B =

1 5

5 1


In this case, V (L) = {±[1, 5]T ,±[5, 1]T ,±[−4, 4]T} whereas λ1 = λ2 =

√
26 while

||[−4, 4]T || =
√
32 > λ2.

Following is a consequence of Corollary 4.6 and Theorem 4.3.

Corollary 4.7 Let v⃗ ∈ L such that ||v⃗|| = λi for some i and v⃗ ̸∈ span({x⃗ | ||x⃗|| <

λi}. Then v⃗ belongs to at least one solution of SMP. Consequently v⃗ also belongs to

V (L).
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Proof. We prove this claim by constructing an SMP solution which contains v⃗. With-

out loss of generality, we can assume that λi−1 < λi. This is because there will always

exist an index j such that λj < λi and λk = λi, ∀k ∈ {j + 1, . . . , i − 1}. Therefore,

we can assume that i = j + 1 and the conditions in the theorem are still satisfied.

From Corollary 4.6, if V is ordered in such a way that the first vector with norm

equal to λi is v⃗, then the algorithm will pick v⃗ as the ith vector. Therefore, v⃗ will

be a part of some solution to SMP.

Above proof describes a class of vectors which belong to at least one SMP solution

and hence belong to V (L). The next result identifies a class of short vectors which

do not belong to any SMP solution.

Lemma 4.8 Let v⃗ be a lattice vector with ||v⃗|| = λi for some i. Let j be an index

with λj < λi and v⃗ ∈ span({x⃗ | ||x⃗|| ≤ λj}). Then v⃗ does not belong to any SMP

solution.

Proof. Define Q = {v⃗′ ∈ L | ||v⃗′|| ≤ λj}. Then dim(span(Q)) ≥ j. Without loss of

generality we assume that j = dim(span(Q)), i.e., j is the largest index with norm

λj.

Assume that there is an SMP solution X = {s⃗1, s⃗2, . . . , s⃗n}, where ||s⃗k|| = λk∀k

and which contains v⃗. Then {s⃗1, . . . , s⃗j} is a basis of the space span(Q). We are

given that v⃗ belongs to span(Q) and it also belongs X so v⃗ ∈ {s⃗1, . . . , s⃗j}. Thus

λi = ||v⃗|| ≤ ||s⃗j|| = λj. This contradicts the fact that λi > λj.

Thus v⃗ cannot belong to any SMP solution. .

These two results give a complete characterization of vectors that belong to at

least one SMP solution..

Theorem 4.9 A lattice vector v⃗ belongs to at least one SMP solution if and only if

||v⃗|| = λi for some i and it does not belong to span({v⃗′ | ||v⃗′|| < λi}).

We now show that the set of Voronoi relevant vector V (L) can generate L, i.e

L = {
∑

i v⃗izi | v⃗i ∈ V (L), zi ∈ Z}.
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Definition 4.10 The closed Voronoi cell of a lattice L is

V(L) = {x⃗ ∈ Rn|∀v⃗ ∈ L, ||x⃗|| ≤ ||x⃗− v⃗||}

Observe that all Voronoi relevant vectors are on the boundary of 2V(L).

Theorem 4.11 ([39]) Any v⃗ ∈ L on the boundary of 2V(L) can be written as sum

of mutually orthogonal Voronoi relevant vectors.

From theorem 4.11, it can be shown that the set M = 2V(L) ∩ L generates L.

We prove this using the following two claims.

Claim 4.12 Any non-zero lattice vector v⃗ lies on the boundary of 2iV(L) for some

i ∈ Z.

Proof. We prove this using induction. For base case, we know that the only lattice

vector in 2V(L) is 0 and there exists lattice vectors on the boundary of 2V(L).

Assume that the claim is true till some i−1 ∈ Z and there exists a vector v⃗ ∈ L\{0}

such that v⃗ ∈ 2iV(L)\2(i−1)V(L). This implies that there exists w⃗ ∈ 2(i−1)V(L)∩

L such that v⃗ ∈ w⃗ + 2V which is a contradiction because w⃗ + 2V(L) contains only

one lattice vector which is w⃗.

Claim 4.13 M can generate all vectors in 2iV(L) ∩ L where i ∈ Z.

Proof. We prove using induction. Observe that claim is true for i = 1 because of

the definition of M .

Assume it is true for some i − 1 ∈ Z. It is easy to see that 2iV(L) ∩ L =(
2(i− 1)V(L) ∩ L

)
+ M . By induction hypothesis, vectors in 2(i − 1)V(L) ∩ L

can be generated by M , therefore 2iV(L) ∩ L can also be generated by M .

Theorem 4.14 The set of Voronoi relevant vectors V (L) generates L.

Proof. We will prove this result using induction on the norm of the vectors of L.

Clearly every vector of V (L) belongs to the integer-span of V (L).
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Suppose v⃗ ∈ L. Induction hypothesis is that all vectors with norm strictly less

than ||v⃗|| belong to the integer span of V (L).

The line segment L, from the origin to the lattice point v being the vector v⃗, the

length of the line segment is ||v⃗||. Suppose this line segment intersects the surface of

the polytope V(v) (the closed Voronoi cell of lattice point v) at a point p. This point

can be either on a facet or a lower dimensional face, F . So F is the intersection

of one of more facets. Let one of these facets be F ′ and it is the border between v

and another lattice point u. Then the origin and u must be on the same side of the

hyper-plane corresponding to the facet F ′. Let point x be the mid-point of the line

segment uv and let d⃗ = v⃗ − u⃗. Then x is on the hyper-plane corresponding to F ′

and x⃗ · d⃗ > 0.

We have u⃗ = x⃗ − d⃗/2 and v⃗ = x⃗ + d⃗/2. So ||v⃗||2 = ||x⃗||2 + ||d⃗||2/4 + x⃗ · d⃗ =

||u⃗||2−2 · x⃗ · d⃗. So ||u⃗||2 < ||v⃗||2. From induction hypothesis u⃗ belongs to the integer

span of V (L). Besides, d⃗ = v⃗ − u⃗ ∈ V (L). Hence v⃗ = u⃗ + d⃗ also belongs to the

integer span of V (L).



Chapter 5

Conclusions

In this thesis, we give an alternate reduction between Closest Vector Problem (CVP)

and Maximum Distance Sublattice Problem (MDSP). We also show some interesting

relationship between the solutions to SMP and Voronoi relevant vectors.

5.1 Scope for Further Work

The Zn isomorphism problem asks whether a given lattice L is a rotation of Zn

or not. A trivial solution to this problem is to find the shortest vectors and check

whether these vectors are mutually orthogonal unit vectors or not. Since we can

solve SVP using a CVP oracle, one direction of research would be to find better

algorithms for CVP in such special lattices.
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